This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. A flexible dynamic nuclear polarization instrument is under construction at the RR. It is planned to be a more flexible instrument than the commercially-available Oxford HyperSense DNP system. Further, the terms and conditions of purchase of the HyperSense prohibit in vivo experiments. With an eye towards potential large mammal in vivo applications, the system is being designed around a larger sample container that will hold approximately twice the amount of sample as the HyperSense sample cup. The DNP system will be based on a cryostat designed in collaboration with Mark Conradi of Washington University placed in a Bruker 15cm bore magnet energized to a field of ~4.6 Tesla. Recent results have demonstrated that incremental increases in field strength can yield dramatically higher nuclear polarizations.(1,2) With this in mind, we have designed the new system to operate at an ESR frequency of ~129 GHz. Furthermore, the extra space available in the large bore magnet should allow the incorporation of a double resonance probe for 1H and either 13C or 89Y. Cross-polarization solid state NMR pulse sequences can then be used to transfer polarization from high gamma protons, which polarize much more quickly under DNP than lower gamma species, to the detection nucleus.(3) References for construction of a polarizer: 1. Jannin S, Comment A, Kurdzesau F, Konter JA, Hautle P, van den Brandt B, van der Klink JJ. A 140 GHz prepolarizer for dissolution dynamic nuclear polarization. The Journal of Chemical Physics 2008;128(24):241102-241104. 2. J?hannesson H, Macholl S, Ardenkjaer-Larsen JH. Dynamic Nuclear Polarization of [1-13C]pyruvic acid at 4.6 tesla. Journal of Magnetic Resonance 2009;197(2):167-175. 3. Maly T, Debelouchina GT, Bajaj VS, Kan-Nian H, Chan-Gyu J, Mak-Jurkauskas ML, Sirigiri JR, van der Wel PCA, Herzfeld J, Temkin RJ, Griffin RG. Dynamic nuclear polarization at high magnetic fields. Journal of Chemical Physics 2008;128(5):N.PAG.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-SBIB-U (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Funk, Alexander M; Anderson, Brian L; Wen, Xiaodong et al. (2017) The rate of lactate production from glucose in hearts is not altered by per-deuteration of glucose. J Magn Reson 284:86-93
Mishkovsky, Mor; Anderson, Brian; Karlsson, Magnus et al. (2017) Measuring glucose cerebral metabolism in the healthy mouse using hyperpolarized 13C magnetic resonance. Sci Rep 7:11719
Moreno, Karlos X; Harrison, Crystal E; Merritt, Matthew E et al. (2017) Hyperpolarized ?-[1-13 C]gluconolactone as a probe of the pentose phosphate pathway. NMR Biomed 30:
Zhang, Liang; Habib, Amyn A; Zhao, Dawen (2016) Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging. Oncotarget 7:38693-38706
Malloy, Craig R; Sherry, A Dean (2016) Biochemical Specificity in Human Cardiac Imaging by 13C Magnetic Resonance Imaging. Circ Res 119:1146-1148
Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C et al. (2016) pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent. Magn Reson Med 75:2432-41
Walker, Christopher M; Merritt, Matthew; Wang, Jian-Xiong et al. (2016) Use of a Multi-compartment Dynamic Single Enzyme Phantom for Studies of Hyperpolarized Magnetic Resonance Agents. J Vis Exp :e53607
Moss, Lacy R; Mulik, Rohit S; Van Treuren, Tim et al. (2016) Investigation into the distinct subcellular effects of docosahexaenoic acid loaded low-density lipoprotein nanoparticles in normal and malignant murine liver cells. Biochim Biophys Acta 1860:2363-2376
Xing, Yixun; Jindal, Ashish K; Regueiro-Figueroa, Martín et al. (2016) The Relationship between NMR Chemical Shifts of Thermally Polarized and Hyperpolarized 89 Y Complexes and Their Solution Structures. Chemistry 22:16657-16667
Jin, Eunsook S; Moreno, Karlos X; Wang, Jian-Xiong et al. (2016) Metabolism of hyperpolarized [1-(13)C]pyruvate through alternate pathways in rat liver. NMR Biomed 29:466-74

Showing the most recent 10 out of 372 publications