This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Voltage-gated potassium (Kv) channels (www.ks.uiuc.edu/Research/kvchannel/) are integral membrane proteins present in all three domains of life. In a specialized class of animal cell, known as excitable cells - including neurons, muscle cells, and endocrine cells - Kv channels work with other cation channels (sodium and calcium channels) to regulate the electrical activity and signaling of the cell [1]. Kv channels activate (open and close) in response to changes in the electrical potential across the cell membrane allowing passive and selective conduction of K+ ions through the channel. Potassium conduction is directed by the electrochemical gradient across the cell membrane and can achieve very high rates, while still discriminating against all other cations (including the smaller Na+ ions) [1]. In addition to electrical signaling in nervous systems, Kv channels play an important role in the regulation of cardiac excitability and regulation of insulin release. In humans, malfunction of these channels can result in neurological or cardiovascular diseases such as long QT syndrome or episodic ataxia [2].

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR005969-22
Application #
8363659
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2011-08-01
Project End
2012-09-09
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
22
Fiscal Year
2011
Total Cost
$49,734
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Type
Organized Research Units
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Decker, Karl; Page, Martin; Aksimentiev, Aleksei (2017) Nanoscale Ion Pump Derived from a Biological Water Channel. J Phys Chem B 121:7899-7906
Wolfe, Aaron J; Si, Wei; Zhang, Zhengqi et al. (2017) Quantification of Membrane Protein-Detergent Complex Interactions. J Phys Chem B 121:10228-10241
Radak, Brian K; Chipot, Christophe; Suh, Donghyuk et al. (2017) Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems. J Chem Theory Comput 13:5933-5944
Sun, Chang; Taguchi, Alexander T; Vermaas, Josh V et al. (2016) Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo3 from Escherichia coli. Biochemistry 55:5714-5725
Belkin, Maxim; Aksimentiev, Aleksei (2016) Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores. ACS Appl Mater Interfaces 8:12599-608
Poudel, Kumud R; Dong, Yongming; Yu, Hang et al. (2016) A time course of orchestrated endophilin action in sensing, bending, and stabilizing curved membranes. Mol Biol Cell 27:2119-32
Vermaas, Josh V; Taguchi, Alexander T; Dikanov, Sergei A et al. (2015) Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides. Biochemistry 54:2104-16
Belkin, Maxim; Chao, Shu-Han; Jonsson, Magnus P et al. (2015) Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA. ACS Nano 9:10598-611
Han, Wei; Schulten, Klaus (2014) Fibril elongation by A?(17-42): kinetic network analysis of hybrid-resolution molecular dynamics simulations. J Am Chem Soc 136:12450-60
Chaudhry, Jehanzeb Hameed; Comer, Jeffrey; Aksimentiev, Aleksei et al. (2014) A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore. Commun Comput Phys 15:

Showing the most recent 10 out of 367 publications