This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Membrane proteins play an essential role in the exchange of material and information between living cells and their environment, the flow and use of energy, and in numerous signaling pathways. As such, they participate in almost all cellular processes fundamental to the living, development, and well being of cells and organisms. Recent advances in experimental structural biology, specially over the last decade, have accumulated a wealth of structural information on membrane proteins, revealing key elements for their function. However, it became soon evident that static structures are not sufficient to fully characterize the function of membrane proteins, and in order to fully understand their mechanism, a dynamical description is necessary. Conformational and interaction dynamics have a large impact on the functional behavior of membrane proteins, for it is the interplay between structure and dynamics that ultimately defines a biological system's functional mechanism. Knowledge of how these fundamental phenomena influence the way membrane proteins function is required to understand the complex web of signaling and energy transduction mechanisms involved both in normal cellular function and their pathologies. Having a long tradition in studying a wide range of membrane proteins in collaboration with leading experimental groups in the world, the Resource joined efforts with a stellar group of researchers with the common goal of applying state of the art biophysical methodologies to investigate at an unprecedented level the structural dynamics of membrane proteins. As a result of this joint effort, the """"""""Membrane Protein Structural Dynamics Consortium (MPSDC)"""""""" ( was formed and funded through a """"""""Glue Grant"""""""" by the NIH National Institute of General Medical Sciences in 2010. The consortium aims at addressing fundamental dynamical phenomena in membrane proteins through a highly interactive, tightly integrated and multidisciplinary effort focused on elucidating the relationship between structure, dynamics and function in a variety of membrane proteins. The MPSDC is organized around multidisciplinary project teams formed by investigators from 14 institutions in five different countries. These teams study major mechanistic questions associated with membrane protein function in two major areas: energy transduction in signaling (ion channels and receptors) and energy inter-conversion (transporters and pumps). Ultimately, our goal is to decode the general mechanistic principles that govern protein movement and its associated fluctuation dynamics by dissecting and analyzing the molecular and dynamical bases of these functions at an unprecedented and quantitative level, as well as exploiting this information to engineer altered and novel activities into membrane protein frameworks to rationally evolve new functions.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois Urbana-Champaign
Organized Research Units
United States
Zip Code
Decker, Karl; Page, Martin; Aksimentiev, Aleksei (2017) Nanoscale Ion Pump Derived from a Biological Water Channel. J Phys Chem B 121:7899-7906
Wolfe, Aaron J; Si, Wei; Zhang, Zhengqi et al. (2017) Quantification of Membrane Protein-Detergent Complex Interactions. J Phys Chem B 121:10228-10241
Radak, Brian K; Chipot, Christophe; Suh, Donghyuk et al. (2017) Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems. J Chem Theory Comput 13:5933-5944
Sun, Chang; Taguchi, Alexander T; Vermaas, Josh V et al. (2016) Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo3 from Escherichia coli. Biochemistry 55:5714-5725
Belkin, Maxim; Aksimentiev, Aleksei (2016) Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores. ACS Appl Mater Interfaces 8:12599-608
Poudel, Kumud R; Dong, Yongming; Yu, Hang et al. (2016) A time course of orchestrated endophilin action in sensing, bending, and stabilizing curved membranes. Mol Biol Cell 27:2119-32
Vermaas, Josh V; Taguchi, Alexander T; Dikanov, Sergei A et al. (2015) Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides. Biochemistry 54:2104-16
Belkin, Maxim; Chao, Shu-Han; Jonsson, Magnus P et al. (2015) Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA. ACS Nano 9:10598-611
Han, Wei; Schulten, Klaus (2014) Fibril elongation by A?(17-42): kinetic network analysis of hybrid-resolution molecular dynamics simulations. J Am Chem Soc 136:12450-60
Chaudhry, Jehanzeb Hameed; Comer, Jeffrey; Aksimentiev, Aleksei et al. (2014) A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore. Commun Comput Phys 15:

Showing the most recent 10 out of 367 publications