This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. We request resources to enable significantly more realistic QM-MM computations that aim to explore the extremely rugged electrostatic landscape of proteins through a detailed fundamental understanding of two phenomena that are widely exploited to study protein structure and dynamics: tryptophan (Trp) fluorescence quenching (by electron transfer from the excited state) and tryptophan fluorescence wavelength shifts due to hydration of the large excited state dipole. Particular focus during the next three years will be on (1) understanding ultrafast (0.5 -100 ps) fluorescence intensity decay (quenching) and wavelength shift experiments on proteins, (2) the spectacular fluctuation of quenching rates seen in single-molecule fluorescence of proteins, and (3) the underlying mechanisms of quenching variation used to monitor protein folding. These are areas of cutting edge experimental work. The project builds on 9 previous years of NSF support for mostly computational work that led to unprecedented progress in understanding Trp fluorescence wavelength variability in proteins using electrostatics, and to unprecedented progress in understanding of the previously unexplained--but widely exploited--Trp fluorescence intensity changes accompanying changes in protein structure. This work has recently been funded by NSF (NSF Proposal ID: 0847047) for the period Aug 2009-July 2012. Our recent ab initio computations of realistic electron transfer coupling elements during dynamics simulations led unexpectedly to an understanding of why wavelength and quenching are often strongly coupled and correlated. With the aid of the proposed multiple ns-scale simulations, the project is now immediately in a position to make insightful contributions to the contested notion that time resolved wavelength shifts speak solely to solvation dynamics, rather than a mixture of solvation dynamics and long term heterogeneity in protein conformation. This is particularly relevant to items (1) and (2) above. A constant theme of our work has shown the supreme importance of the enormous local electric field strength and direction in determining fluorescence behavior in proteins. Continued effort in these areas is encouraged by the emerging view that the catalytic power of enzymes is largely due to a specifically oriented, preorganized electrostatic environment, whose energy may come from reduction in folding energy. A constant theme from the Callis group has been that an ordered electrostatic environment coupled with large fluctuations is precisely what determines whether fluorescence will be strong or weak, and whether its average wavelength will be short or long. This meshes perfectly with the exciting recent observation by Marcus and others that the temporal behavior of fluctuations in electrostatic field is in common with that of other properties of proteins over the time scale of biological importance (milliseconds to seconds). Two students and a postdoctoral associate will work on subprojects entitled: (A) QM-MM simulations examining the relationship of solvent relaxation and heterogeneity in ultrafast TDSS measurements, and (B) Prediction of tryptophan fluorescence intensities during folding of the villin headpiece. The PI requests 500, 000 SU.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR006009-20S1
Application #
8364314
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2011-09-15
Project End
2013-07-31
Budget Start
2011-09-15
Budget End
2013-07-31
Support Year
20
Fiscal Year
2011
Total Cost
$1,094
Indirect Cost
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Jurkowitz, Marianne S; Patel, Aalapi; Wu, Lai-Chu et al. (2015) The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. Biochim Biophys Acta 1848:742-51

Showing the most recent 10 out of 292 publications