This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Bacteria are living, chemical computers. By assembling together different genetic parts (refs), such as promoters, ribosome binding sites, and protein coding sequences, into a DNA molecule of a specific sequence, genetic programs are constructed that confer many useful functions to a bacterium, including the ability to manufacture biofuels and drugs from renewable sugars (refs). In the field of synthetic biology, a central goal is obtaining the ability to design genetic programs in a predictable fashion (refs). Currently, such genetic programs are constructed and tested using time-consuming trial-and-error techniques, such as random mutagenesis. We are developing the methodologies to design synthetic genetic systems in a predictive and systematic way. The methods combine biophysical models of genetic part function, DNA sequence optimization techniques, and design principles for genetic systems to convert a target biological behavior into a specific DNA sequence. We are also creating a user-friendly web-based interface where members of the genetic and metabolic engineering communities can specify a target biological function and receive the DNA sequence of a genetic program that carries out that function. We request 100 000 SUs to pursue the following research goals: (i) improve our recently developed design method for synthetic ribosome binding site by expanding it towards the optimization of entire protein coding sequences;(ii) allow users to request optimization jobs on their protein coding sequences of interest and off-load this computation onto TeraGrid resources;(iii) solve the RBS Minimax problem for a 22 enzyme metabolic network to maximize production of a chemical precursor to a biofuel. The computational resources are divided as: 40 000 SUs on Roaming TeraGrid and 60 000 SUs on Abe, Ranger, and/or Steele systems.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Carnegie-Mellon University
Biostatistics & Other Math Sci
Schools of Arts and Sciences
United States
Zip Code
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Lee, Tai Sing (2015) The visual system's internal model of the world. Proc IEEE Inst Electr Electron Eng 103:1359-1378
Kuhlman, Chris J; Anil Kumar, V S; Marathe, Madhav V et al. (2015) Inhibiting diffusion of complex contagions in social networks: theoretical and experimental results. Data Min Knowl Discov 29:423-465
Jurkowitz, Marianne S; Patel, Aalapi; Wu, Lai-Chu et al. (2015) The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. Biochim Biophys Acta 1848:742-51

Showing the most recent 10 out of 289 publications