This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Brain water proton (1H2O) longitudinal relaxation time constants (T1) were obtained from three healthy individuals at magnetic field strengths (B0) of 0.2 Tesla (T), 1.0T, 1.5T, 4.0T, and 7.0T. A 5-mm midventricular axial slice was sampled using a modified Look-Locker technique with 1.5 mm in-plane resolution, and 32 time points post-adiabatic inversion. The results confirmed that for most brain tissues, T1 values increased by more than a factor of 3 between 0.2T and 7T, and over this range were well fitted by T1 (s)=0.583(B0)0.382, T1(s)=0.857(B0)0.376, and T1(s)=1.35(B0)0.340 for white matter (WM), internal GM, and blood 1H2O, respectively. The ventricular cerebrospinal fluid (CSF) 1H2O T1 value did not change with B0, and its average value (standard deviation (SD)) across subjects and magnetic fields was 4.3 (+/-0.2) s. The tissue 1/T1 values at each field were well correlated with the macromolecular mass fraction, and to a lesser extent tissue iron content. The field-dependent increases in 1H2O T1 values more than offset the well-known decrease in typical MRI contrast reagent (CR) relaxivity, and simulations predict that this leads to lower CR concentration detection thresholds with increased magnetic field.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR008079-16
Application #
7721361
Study Section
Special Emphasis Panel (ZRG1-SBIB-S (40))
Project Start
2008-06-01
Project End
2009-05-31
Budget Start
2008-06-01
Budget End
2009-05-31
Support Year
16
Fiscal Year
2008
Total Cost
$17,835
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Herzberg, Max P; Hodel, Amanda S; Cowell, Raquel A et al. (2018) Risk taking, decision-making, and brain volume in youth adopted internationally from institutional care. Neuropsychologia 119:262-270
U?urbil, Kamil (2018) Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 168:7-32
Foell, Jens; Palumbo, Isabella M; Yancey, James R et al. (2018) Biobehavioral threat sensitivity and amygdala volume: A twin neuroimaging study. Neuroimage 186:14-21
Magnitsky, Sergey; Pickup, Stephan; Garwood, Michael et al. (2018) Imaging of a high concentration of iron labeled cells with positive contrast in a rat knee. Magn Reson Med :
Lee, Byeong-Yeul; Zhu, Xiao-Hong; Woo, Myung Kyun et al. (2018) Interleaved 31 P MRS imaging of human frontal and occipital lobes using dual RF coils in combination with single-channel transmitter-receiver and dynamic B0 shimming. NMR Biomed 31:
Wilson, Sylia; Malone, Stephen M; Hunt, Ruskin H et al. (2018) Problematic alcohol use and hippocampal volume in a female sample: disentangling cause from consequence using a co-twin control study design. Psychol Med 48:1673-1684
Bolan, Patrick J; Kim, Eunhee; Herman, Benjamin A et al. (2017) MR spectroscopy of breast cancer for assessing early treatment response: Results from the ACRIN 6657 MRS trial. J Magn Reson Imaging 46:290-302
Nelson, Brent G; Bassett, Danielle S; Camchong, Jazmin et al. (2017) Comparison of large-scale human brain functional and anatomical networks in schizophrenia. Neuroimage Clin 15:439-448
Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo et al. (2016) Graph Matching: Relax at Your Own Risk. IEEE Trans Pattern Anal Mach Intell 38:60-73
Ugurbil, Kamil (2016) What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging. Philos Trans R Soc Lond B Biol Sci 371:

Showing the most recent 10 out of 493 publications