This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The long term goal of this project is to establish a multimodal functional neuroimaging methodology for noninvasively imaging brain activity and connectivity with high spatial and temporal resolution. We propose to develop and evaluate novel methods to integrate high-temporal-resolution electroencephalography (EEG) and high-spatial-resolution blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) for imaging neural activations and their interactions in humans. To achieve these goals, the following specific aims will be addressed: 1) Develop multimodal imaging methods to integrate EEG and fMRI for imaging brain activity. We will develop and refine novel neuroimaging methods for reconstructing current density distributions from integration of EEG and BOLD-fMRI. Of innovation is the proposed strategy to estimate time-variant source co-variance from both EEG and quantified BOLD responses, and to extend the method to the spatio- temporal-frequency domain. We will rigorously evaluate the proposed multimodal neuroimaging methods by means of systematic computer simulations and refine the strategy of integrating BOLD-fMRI with EEG. 2) Evaluate multimodal brain activity imaging through well-controlled human experimentation. We will evaluate our modeling assumptions with regard to the relationship between the BOLD response and the event-related electrophysiological response in a group of human subjects. We will evaluate the proposed methods using visual and motor paradigms in a group of healthy subjects. We will evaluate the proposed imaging approach using independent subdural potential recordings on 30 epilepsy patients performing the same motor and somatosensory tasks as in corresponding BOLD-fMRI and EEG studies. 3) Multimodal imaging of brain functional connectivity. We will extend the use of EEG and BOLD-fMRI for the estimation of brain functional connectivity among regions of interest. We will develop time-varying connectivity estimation methods and rigorous graph theory based analysis methods to assess the connectivity estimates. We will rigorously evaluate the fMRI-EEG integrated brain connectivity estimation methods by computer simulations and human experimentation including healthy subjects and patients undergoing surgical evaluation. The successful completion of the proposed research will: (1) enable us to address an important question in functional neuroimaging as to whether, and to what extent, multimodal integration of fMRI and EEG can further improve the performance of spatiotemporal neuroimaging;(2) enable us to develop and evaluate a novel high- resolution spatiotemporal functional neuroimaging approach, which promises to have great potential in terms of mapping human brain activity and connectivity in both healthy subjects and patients suffering from various neurological and psychiatric disorders.

Public Health Relevance

The proposed work aims at developing and evaluating a high-resolution multimodal neuroimaging technology, which may provide a significantly enhanced ability to image dynamic brain function. The establishment of such a high-resolution spatio-temporal imaging modality may greatly enhance our ability to tackle and manage a number of neurological and mental disorders, and provide a significant benefit to patient healthcare. Public Health Relevance: The proposed work aims at developing and evaluating a high-resolution multimodal neuroimaging technology, which may provide a significantly enhanced ability to image dynamic brain function. The establishment of such a high-resolution spatio-temporal imaging modality may greatly enhance our ability to tackle and manage a number of neurological and mental disorders, and provide a significant benefit to patient healthcare.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008079-19
Application #
8362839
Study Section
Special Emphasis Panel (ZRG1-SBIB-S (40))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
19
Fiscal Year
2011
Total Cost
$22,692
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Herzberg, Max P; Hodel, Amanda S; Cowell, Raquel A et al. (2018) Risk taking, decision-making, and brain volume in youth adopted internationally from institutional care. Neuropsychologia 119:262-270
U?urbil, Kamil (2018) Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 168:7-32
Foell, Jens; Palumbo, Isabella M; Yancey, James R et al. (2018) Biobehavioral threat sensitivity and amygdala volume: A twin neuroimaging study. Neuroimage 186:14-21
Magnitsky, Sergey; Pickup, Stephan; Garwood, Michael et al. (2018) Imaging of a high concentration of iron labeled cells with positive contrast in a rat knee. Magn Reson Med :
Lee, Byeong-Yeul; Zhu, Xiao-Hong; Woo, Myung Kyun et al. (2018) Interleaved 31 P MRS imaging of human frontal and occipital lobes using dual RF coils in combination with single-channel transmitter-receiver and dynamic B0 shimming. NMR Biomed 31:
Wilson, Sylia; Malone, Stephen M; Hunt, Ruskin H et al. (2018) Problematic alcohol use and hippocampal volume in a female sample: disentangling cause from consequence using a co-twin control study design. Psychol Med 48:1673-1684
Bolan, Patrick J; Kim, Eunhee; Herman, Benjamin A et al. (2017) MR spectroscopy of breast cancer for assessing early treatment response: Results from the ACRIN 6657 MRS trial. J Magn Reson Imaging 46:290-302
Nelson, Brent G; Bassett, Danielle S; Camchong, Jazmin et al. (2017) Comparison of large-scale human brain functional and anatomical networks in schizophrenia. Neuroimage Clin 15:439-448
Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo et al. (2016) Graph Matching: Relax at Your Own Risk. IEEE Trans Pattern Anal Mach Intell 38:60-73
Ugurbil, Kamil (2016) What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging. Philos Trans R Soc Lond B Biol Sci 371:

Showing the most recent 10 out of 493 publications