This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. In this project, we plan to validate a new biomarker (adiabatic T1? and T2?) measured non-invasively in the substantia nigra MRI as a means to achieve statistical separation between Parkinson's diseased (PD) patients from control subjects. The novel adiabatic T1? and T2? MRI relaxation methods proposed here for the measurement of neuronal deficiency may provide useful insights into the pathogenesis of neurological disorders, in particular PD. We demonstrated that the T1? relaxation measurements provide direct information about the fundamental dynamic parameters of the water spins in different areas of the brain. We show that the change in density of neurons and their projections is reflected in the tumbling of the water spins. This suggests that T1? measurements can potentially be used to quantify the neuronal loss in the SNc of PD patients, as well as likely other neurodegenerative conditions. The T1? measurements provide unique information as compared to conventional T1 MRI due to the sweep of the effective magnetic field during the adiabatic pulses used for the measurements. Further studies will be warranted to confirm the applicability of our technique to additional neurodegenerative disease models, however we expect that this technique will prove capable of detecting cell loss in any given brain region of interest.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008079-19
Application #
8362890
Study Section
Special Emphasis Panel (ZRG1-SBIB-S (40))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
19
Fiscal Year
2011
Total Cost
$15,128
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Bolan, Patrick J; Kim, Eunhee; Herman, Benjamin A et al. (2017) MR spectroscopy of breast cancer for assessing early treatment response: Results from the ACRIN 6657 MRS trial. J Magn Reson Imaging 46:290-302
U?urbil, Kamil (2017) Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage :
Wilson, Sylia; Malone, Stephen M; Hunt, Ruskin H et al. (2017) Problematic alcohol use and hippocampal volume in a female sample: disentangling cause from consequence using a co-twin control study design. Psychol Med :1-12
Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo et al. (2016) Graph Matching: Relax at Your Own Risk. IEEE Trans Pattern Anal Mach Intell 38:60-73
Musgrove, Donald R; Hughes, John; Eberly, Lynn E (2016) Fast, fully Bayesian spatiotemporal inference for fMRI data. Biostatistics 17:291-303
Andronesi, Ovidiu C; Loebel, Franziska; Bogner, Wolfgang et al. (2016) Treatment Response Assessment in IDH-Mutant Glioma Patients by Noninvasive 3D Functional Spectroscopic Mapping of 2-Hydroxyglutarate. Clin Cancer Res 22:1632-41
Thatcher, R W; Palmero-Soler, E; North, D M et al. (2016) Intelligence and eeg measures of information flow: efficiency and homeostatic neuroplasticity. Sci Rep 6:38890
Uroševi?, Snežana; Luciana, Monica; Jensen, Jonathan B et al. (2016) Age associations with neural processing of reward anticipation in adolescents with bipolar disorders. Neuroimage Clin 11:476-85
Kennedy, James T; Collins, Paul F; Luciana, Monica (2016) Higher Adolescent Body Mass Index Is Associated with Lower Regional Gray and White Matter Volumes and Lower Levels of Positive Emotionality. Front Neurosci 10:413
Wiesner, Hannes M; Balla, Dávid Z; Shajan, G et al. (2016) (17)O relaxation times in the rat brain at 16.4 tesla. Magn Reson Med 75:1886-93

Showing the most recent 10 out of 485 publications