This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Solution X-ray scattering has a promise of becoming very useful for structural investigation of systems such as large non-globular macromolecular assemblies, multi-domain proteins, or inherently flexible or disordered macromolecules. The central goal of this proposal is to create a methodology for a very accurate calculation of wide-angle scattering profiles from macromolecular atomic coordinates for a combined application with solution NMR for investigation of structure and dynamics. We are concentrating on macromolecular systems for which the highest quality structural solution NMR models are available, along with the extensive dynamical information, including protein G, ubiquitin, lysozyme, calmodulin and Dickerson dodecamer B-DNA. We are assuming that the average macromolecular geometry for these systems is known exactly and any discrepancies between the calculated and observed scattering profiles are to the deficiencies of the scattering data prediction. We will obtain explicitly calculated displaced solvent form factors from accurate bulk water distributions in place of the solvent-corrected atomic form factors which will afford us a more accurate prediction of the wide-angle scattering intensity. We will also incorporate a representation of the atomic motions in the macromolecule into the calculation of the scattering profile using extensive solution NMR data on the dynamics of the listed proteins. Finally, we will improve scattering data modeling by constructing inhomogeneous three-dimensional distributions of the solvent surrounding the macromolecule that reflect the compositions of the proteins surfaces and best-fit the scattering data. The methodology will be validated on Dickerson dodecamer B-DNA for which the positions of the bound waters are well known.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR008630-12
Application #
7601765
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2007-04-01
Project End
2008-03-31
Budget Start
2007-04-01
Budget End
2008-03-31
Support Year
12
Fiscal Year
2007
Total Cost
$3,878
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Nobrega, R Paul; Arora, Karunesh; Kathuria, Sagar V et al. (2014) Modulation of frustration in folding by sequence permutation. Proc Natl Acad Sci U S A 111:10562-7
Jiao, Lianying; Ouyang, Songying; Shaw, Neil et al. (2014) Mechanism of the Rpn13-induced activation of Uch37. Protein Cell 5:616-30

Showing the most recent 10 out of 100 publications