This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. We have performed a series of measurements using the newly designed Bent Laue analyzer for Cu K edge XANES measurements. The analyzers consist of an Al bender system and Si (111) crystal of different thicknesses in order to provide more flux or higher energy resolution depending on their final application. We have used the selected analyzer that shows better performance in term of energy resolution, near 10 eV at the Cu K? line energy. We have measured a set of standard samples consisting of Cu compounds of different Cu oxidation state: Cu(I) and Cu(II). These compounds were evaluated using a silicon drift detector and the bent laue analyzer. The results show that Cu(I) compounds have a very strong pre edge peak at 8983 eV where Cu(II) compounds do not have that peak. The bent laue analyzer was able to recognize the difference even under conditions of very diluted samples. We have also evaluated the Cu content of tissue sections: normal and tumor tissue. The tumor data indicates that Cu(II) species are potentially present in the tissue while the normal tissue data indicates very little or no content of Cu(II) species. These results will be evaluated considering other complementary technique to confirm the presence of Cu(II) in tumor tissue sections.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-16
Application #
8361277
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2011-01-01
Project End
2011-12-31
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
16
Fiscal Year
2011
Total Cost
$71,082
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Nobrega, R Paul; Arora, Karunesh; Kathuria, Sagar V et al. (2014) Modulation of frustration in folding by sequence permutation. Proc Natl Acad Sci U S A 111:10562-7
Jiao, Lianying; Ouyang, Songying; Shaw, Neil et al. (2014) Mechanism of the Rpn13-induced activation of Uch37. Protein Cell 5:616-30
Witayavanitkul, Namthip; Ait Mou, Younss; Kuster, Diederik W D et al. (2014) Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium. J Biol Chem 289:8818-27

Showing the most recent 10 out of 96 publications