This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Objective: In recent years there has been increased interest to perform cardiac interventions such as EP ablation under MR-guidance. Directly monitoring the temperature rise during these procedures could potentially be helpful to verify successful ablation and predict treatment outcome. Here, we investigate the feasibility of monitoring temperature changes in the left ventricular myocardium in real-time. Temperature images based on the proton resonance frequency (PRF) shift are reconstructed using a hybrid method that combines multi-baseline subtraction and referenceless thermometry. Materials and Methods: Short-axis free-breathing cardiac images were acquired in three volunteers (no heat applied) in real-time using spiral gradient echo acquisitions with 4-5 interleaves on a 3T scanner using echo times of 3 ms, 5 ms, and 7 ms. Hybrid temperature image reconstruction was performed off-line in Matlab. The hybrid imaging model assumes that three sources contribute to image phase during thermal treatment: Background anatomical phase, spatially smooth phase deviations, and focal, heat-induced phase shifts. For the referenceless portion of the processing, sixth-order background polynomials were used and the multi-baseline libraries were comprised of 150 images (sliding window reconstruction) acquired during free breathing, representing approximately three cardiac cycles. Temperature reconstruction was performed over circular regions of interest containing the entire left ventricle. Temperature uncertainty was measured in the septum and the free ventricular wall in images during systole and diastole. To read about other projects ongoing at the Lucas Center, please visit http://rsl.stanford.edu/ (Lucas Annual Report and ISMRM 2011 Abstracts)

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR009784-17
Application #
8362946
Study Section
Special Emphasis Panel (ZRG1-SBIB-U (40))
Project Start
2011-04-01
Project End
2012-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
17
Fiscal Year
2011
Total Cost
$19,531
Indirect Cost
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Taviani, Valentina; Alley, Marcus T; Banerjee, Suchandrima et al. (2017) High-resolution diffusion-weighted imaging of the breast with multiband 2D radiofrequency pulses and a generalized parallel imaging reconstruction. Magn Reson Med 77:209-220
Guo, Jia; Holdsworth, Samantha J; Fan, Audrey P et al. (2017) Comparing accuracy and reproducibility of sequential and Hadamard-encoded multidelay pseudocontinuous arterial spin labeling for measuring cerebral blood flow and arterial transit time in healthy subjects: A simulation and in vivo study. J Magn Reson Imaging :
Uecker, Martin; Lustig, Michael (2017) Estimating absolute-phase maps using ESPIRiT and virtual conjugate coils. Magn Reson Med 77:1201-1207
Lai, Lillian M; Cheng, Joseph Y; Alley, Marcus T et al. (2017) Feasibility of ferumoxytol-enhanced neonatal and young infant cardiac MRI without general anesthesia. J Magn Reson Imaging 45:1407-1418
Kogan, Feliks; Hargreaves, Brian A; Gold, Garry E (2017) Volumetric multislice gagCEST imaging of articular cartilage: Optimization and comparison with T1rho. Magn Reson Med 77:1134-1141
Aksoy, Murat; Maclaren, Julian; Bammer, Roland (2017) Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system. Magn Reson Imaging 39:44-52
Tamir, Jonathan I; Uecker, Martin; Chen, Weitian et al. (2017) T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med 77:180-195
Vos, Sjoerd B; Aksoy, Murat; Han, Zhaoying et al. (2016) Trade-off between angular and spatial resolutions in in vivo fiber tractography. Neuroimage 129:117-132
Suh, Ga-Young; Choi, Gilwoo; Herfkens, Robert J et al. (2016) Three-Dimensional Modeling Analysis of Visceral Arteries and Kidneys during Respiration. Ann Vasc Surg 34:250-60
Ong, Frank; Lustig, Michael (2016) Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition. IEEE J Sel Top Signal Process 10:672-687

Showing the most recent 10 out of 445 publications