This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Class switch DNA recombination (CSR) is the mechanism that diversifies the biological effector functions of antibodies. Activation-induced cytidine deaminase (AID), a key protein in CSR, targets immunoglobulin H (IgH) switch regions, which contain 5'-AGCT-3'repeats in their core. How AID is recruited to switch regions remains unclear. Here we show that 14-3-3 adaptor proteins have an important role in CSR. 14-3-3 proteins specifically bound 5'-AGCT-3'repeats, were upregulated in B cells undergoing CSR and were recruited with AID to the switch regions that are involved in CSR events (Smu-->Sgamma1, Smu-->Sgamma3 or Smu-->Salpha). Moreover, blocking 14-3-3 by difopein, 14-3-3gamma deficiency or expression of a dominant-negative 14-3-3sigma mutant impaired recruitment of AID to switch regions and decreased CSR. Finally, 14-3-3 proteins interacted directly with AID and enhanced AID-mediated in vitro DNA deamination, further emphasizing the important role of these adaptors in CSR.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR011823-16
Application #
8365797
Study Section
Special Emphasis Panel (ZRG1-CB-L (40))
Project Start
2011-09-01
Project End
2012-06-30
Budget Start
2011-09-01
Budget End
2012-06-30
Support Year
16
Fiscal Year
2011
Total Cost
$12,768
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Shan, Chun-Min; Wang, Jiyong; Xu, Ke et al. (2016) A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading. Elife 5:
Kim, Tae Kwon; Tirloni, Lucas; Pinto, Antônio F M et al. (2016) Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding. PLoS Negl Trop Dis 10:e0004323
McBride, Ryan; Paulson, James C; de Vries, Robert P (2016) A Miniaturized Glycan Microarray Assay for Assessing Avidity and Specificity of Influenza A Virus Hemagglutinins. J Vis Exp :
McClatchy, D B; Savas, J N; Martínez-Bartolomé, S et al. (2016) Global quantitative analysis of phosphorylation underlying phencyclidine signaling and sensorimotor gating in the prefrontal cortex. Mol Psychiatry 21:205-15
Wang, Jiyong; Cohen, Allison L; Letian, Anudari et al. (2016) The proper connection between shelterin components is required for telomeric heterochromatin assembly. Genes Dev 30:827-39
Di Maggio, Lucía Sánchez; Tirloni, Lucas; Pinto, Antonio F M et al. (2016) Across intra-mammalian stages of the liver f luke Fasciola hepatica: a proteomic study. Sci Rep 6:32796
Homer, Christina M; Summers, Diana K; Goranov, Alexi I et al. (2016) Intracellular Action of a Secreted Peptide Required for Fungal Virulence. Cell Host Microbe 19:849-64
Silva, Erica; Betleja, Ewelina; John, Emily et al. (2016) Ccdc11 is a novel centriolar satellite protein essential for ciliogenesis and establishment of left-right asymmetry. Mol Biol Cell 27:48-63
Tang, Wen; Tu, Shikui; Lee, Heng-Chi et al. (2016) The RNase PARN-1 Trims piRNA 3' Ends to Promote Transcriptome Surveillance in C. elegans. Cell 164:974-84
Carvalho, Paulo C; Lima, Diogo B; Leprevost, Felipe V et al. (2016) Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. Nat Protoc 11:102-17

Showing the most recent 10 out of 561 publications