This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. RNA polymerase is one of the largest protein complexes in the cell and is responsible for transcribing RNA using DNA as templates. Although the core complex can bind non-specific DNA, it requires an appropriate sigma factor to form the holoenzyme for specific promoter binding and transcription initiation. Upon binding to a promoter, the sigma factor facilitates melting of the downstream DNA to form the transcription initiation bubble, and thus converting the RNA polymerase to an open complex competent for initiating RNA synthesis. The goal of this project is to capture the individual steps of transcription initiation. The holoenzyme we are working on is the E. coli RNA polymerase with bound primary sigma factor (sigma-70).

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR012408-15
Application #
8363339
Study Section
Special Emphasis Panel (ZRG1-BCMB-R (40))
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
15
Fiscal Year
2011
Total Cost
$3,058
Indirect Cost
Name
Brookhaven National Laboratory
Department
Type
DUNS #
027579460
City
Upton
State
NY
Country
United States
Zip Code
11973
Tajima, Nami; Karakas, Erkan; Grant, Timothy et al. (2016) Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534:63-8
Arturo, Emilia C; Gupta, Kushol; Héroux, Annie et al. (2016) First structure of full-length mammalian phenylalanine hydroxylase reveals the architecture of an autoinhibited tetramer. Proc Natl Acad Sci U S A 113:2394-9
Roessler, Christian G; Agarwal, Rakhi; Allaire, Marc et al. (2016) Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. Structure 24:631-40
Young, Iris D; Ibrahim, Mohamed; Chatterjee, Ruchira et al. (2016) Structure of photosystem II and substrate binding at room temperature. Nature 540:453-457
Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander et al. (2016) Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase. J Lab Autom 21:107-14
Guo, Bingqian; McMillan, Brian J; Blacklow, Stephen C (2016) Structure and function of the Mind bomb E3 ligase in the context of Notch signal transduction. Curr Opin Struct Biol 41:38-45
Buensuceso, Ryan N C; Nguyen, Ylan; Zhang, Kun et al. (2016) The Conserved Tetratricopeptide Repeat-Containing C-Terminal Domain of Pseudomonas aeruginosa FimV Is Required for Its Cyclic AMP-Dependent and -Independent Functions. J Bacteriol 198:2263-74
McMillan, Brian J; Tibbe, Christine; Jeon, Hyesung et al. (2016) Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein. Cell Rep 16:1211-7
Cappadocia, Laurent; Pichler, Andrea; Lima, Christopher D (2015) Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat Struct Mol Biol 22:968-75
Thomas, Keisha; Cameron, Scott A; Almo, Steven C et al. (2015) Active site and remote contributions to catalysis in methylthioadenosine nucleosidases. Biochemistry 54:2520-9

Showing the most recent 10 out of 154 publications