This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. After insulin stimulation, the insulin receptor, a receptor tyrosine kinase, is downregulated by several mechanisms, including dephosphorylation by protein tyrosine phosphatases such as PTP1B and binding of the adapter protein Grb14. Grb14, a member of the Grb7/10/14 family, comprises an N-terminal poly-proline region, a Ras-associating (RA) domain, a pleckstrin-homology (PH) domain, a BPS (between PH and SH2) region, and a C-terminal Src-homology-2 (SH2) domain. Our laboratory has previously shown that the BPS region of Grb14 directly inhibits the catalytic activity of the insulin receptor by binding as a pseudo-substrate in the active site of the kinase domain. This results in suppression of substrate phosphorylation and hence downregulation of insulin signaling. The C-terminal SH2 domain binds to the phosphorylated activation loop of the kinase to increase the affinity and specificity of the Grb14-insulin receptor interaction.Biochemical studies in our laboratory have shown that Grb14-mediated inhibition of insulin signaling also requires functional RA and PH domains. Our crystallographic studies showed that the two domains are structurally coupled. The RA and PH domains of Grb14 are thought to interact with the small GTPase Ras and phosphoinositides, respectively. We hypothesize that Ras activation serves as a timing mechanism for the negative-feedback inhibition of insulin signaling by Grb14. That is, Ras, in coordination with membrane phosphoinositides, recruits Grb14 to the cell membrane in close proximity to the insulin receptor, facilitating the interaction of BPS and SH2 domains with the kinase domain, resulting in its inhibition.The interaction with Ras, for which we have biochemical data, is specific to Grb14 and Grb7. The other family member, Grb10, does not bind well to Ras despite ~50% sequence identity in the RA domain. Crystallographic studies of Grb14 RA-PH in complex with GTP-bound (activated) Ras, for which we seek mail-in synchrotron data collection, will shed light on the mode of binding between these two proteins and provide the structural basis for the recruitment of Grb14 by activated Ras.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR012408-15
Application #
8363348
Study Section
Special Emphasis Panel (ZRG1-BCMB-R (40))
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
15
Fiscal Year
2011
Total Cost
$1,921
Indirect Cost
Name
Brookhaven National Laboratory
Department
Type
DUNS #
027579460
City
Upton
State
NY
Country
United States
Zip Code
11973
Tajima, Nami; Karakas, Erkan; Grant, Timothy et al. (2016) Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534:63-8
Arturo, Emilia C; Gupta, Kushol; Héroux, Annie et al. (2016) First structure of full-length mammalian phenylalanine hydroxylase reveals the architecture of an autoinhibited tetramer. Proc Natl Acad Sci U S A 113:2394-9
Roessler, Christian G; Agarwal, Rakhi; Allaire, Marc et al. (2016) Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. Structure 24:631-40
Young, Iris D; Ibrahim, Mohamed; Chatterjee, Ruchira et al. (2016) Structure of photosystem II and substrate binding at room temperature. Nature 540:453-457
Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander et al. (2016) Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase. J Lab Autom 21:107-14
Guo, Bingqian; McMillan, Brian J; Blacklow, Stephen C (2016) Structure and function of the Mind bomb E3 ligase in the context of Notch signal transduction. Curr Opin Struct Biol 41:38-45
Buensuceso, Ryan N C; Nguyen, Ylan; Zhang, Kun et al. (2016) The Conserved Tetratricopeptide Repeat-Containing C-Terminal Domain of Pseudomonas aeruginosa FimV Is Required for Its Cyclic AMP-Dependent and -Independent Functions. J Bacteriol 198:2263-74
McMillan, Brian J; Tibbe, Christine; Jeon, Hyesung et al. (2016) Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein. Cell Rep 16:1211-7
Cappadocia, Laurent; Pichler, Andrea; Lima, Christopher D (2015) Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat Struct Mol Biol 22:968-75
Thomas, Keisha; Cameron, Scott A; Almo, Steven C et al. (2015) Active site and remote contributions to catalysis in methylthioadenosine nucleosidases. Biochemistry 54:2520-9

Showing the most recent 10 out of 154 publications