This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. ADP-ribosyl transferase (ADPRT), also known as PARP-1, is a chromatin-associated enzyme that functions in DNA repair, transcriptional regulation, and controlled cell death. ADPRT initiates a DNA damage detection and repair pathway that corrects breaks in the structure of DNA, thereby functioning to maintain the integrity and stability of our genomes. Inhibitors of ADPRT sensitize cells to DNA-damaging agents used in cancer therapy;therefore ADPRT has emerged as a promising target for cancer treatment. The catalytic activity of ADPRT is dramatically stimulated by DNA strand breaks. Our objective is to structurally define the molecular mechanism of ADPRT activation. Understanding the mechanism of activation might reveal novel strategies for controlling ADPRT activity. We are currently focusing on a DNA-binding fragment of ADPRT in complex with DNA. The mode of DNA binding is currently unknown. Our data will be used to design structure-based mutants that test the function of this domain of ADPRT. Our long-term goals are to understand how ADPRT recognizes breaks in DNA structure, how DNA binding triggers ADPRT catalytic activity, and how ADPRT activation initiates DNA damage repair.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR012408-15
Application #
8363370
Study Section
Special Emphasis Panel (ZRG1-BCMB-R (40))
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
15
Fiscal Year
2011
Total Cost
$9,580
Indirect Cost
Name
Brookhaven National Laboratory
Department
Type
DUNS #
027579460
City
Upton
State
NY
Country
United States
Zip Code
11973
Fuller, Franklin D; Gul, Sheraz; Chatterjee, Ruchira et al. (2017) Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat Methods 14:443-449
Wangkanont, Kittikhun; Winton, Valerie J; Forest, Katrina T et al. (2017) Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry 56:3983-3992
VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting et al. (2017) Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J Biol Chem 292:9493-9504
Song, Lingshuang; Yang, Lin; Meng, Jie et al. (2017) Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental-Computational Study. J Phys Chem Lett 8:347-351
Firestone, Ross S; Cameron, Scott A; Karp, Jerome M et al. (2017) Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase. ACS Chem Biol 12:464-473
Orlova, Natalia; Gerding, Matthew; Ivashkiv, Olha et al. (2017) The replication initiator of the cholera pathogen's second chromosome shows structural similarity to plasmid initiators. Nucleic Acids Res 45:3724-3737
Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander et al. (2016) Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase. J Lab Autom 21:107-14
Tajima, Nami; Karakas, Erkan; Grant, Timothy et al. (2016) Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534:63-8
Liu, Weifeng; Ramagopal, Udupi; Cheng, Huiyong et al. (2016) Crystal Structure of the Complex of Human FasL and Its Decoy Receptor DcR3. Structure 24:2016-2023
Young, Iris D; Ibrahim, Mohamed; Chatterjee, Ruchira et al. (2016) Structure of photosystem II and substrate binding at room temperature. Nature 540:453-457

Showing the most recent 10 out of 162 publications