This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Abnormalities in the auditory system have long been suspected to be present among people who suffer from schizophrenia and other psychotic disorders, due in part to the high prevalence of auditory hallucinations amongst these patients. Over the last decade, a group of Australian researchers have identified an index of auditory information processing, recorded from scalp electrodes, that is abnormal in patients with schizophrenia, and their biological relatives. The present project will examine the relationship between these electrophysiological findings, and a new non-invasive technique of functional brain imaging, looking at changes in blood flow, that can identify the specific brain regions that are active during auditory information processing, and link these to the sources of the scalp recorded measures. Both of these functional measures will be examined in relation to the volumes of brain tissue, measured from magnetic resonance imaging scans using new analysis tools, that enable the identification of subtle changes in brain anatomy. By examining patients who have recently developed schizophrenia, those who have suffered from the illness for longer periods of time, and their close relatives, this study will provide the opportunity to identify biological markers of increased vulnerability for the development of schizophrenia.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Medicine
Los Angeles
United States
Zip Code
Green, Shulamite A; Hernandez, Leanna; Bookheimer, Susan Y et al. (2016) Salience Network Connectivity in Autism Is Related to Brain and Behavioral Markers of Sensory Overresponsivity. J Am Acad Child Adolesc Psychiatry 55:618-626.e1
Kodumuri, Nishanth; Sebastian, Rajani; Davis, Cameron et al. (2016) The association of insular stroke with lesion volume. Neuroimage Clin 11:41-5
Levine, Andrew J; Soontornniyomkij, Virawudh; Achim, Cristian L et al. (2016) Multilevel analysis of neuropathogenesis of neurocognitive impairment in HIV. J Neurovirol 22:431-41
Ordóñez, Anna E; Loeb, Frances F; Zhou, Xueping et al. (2016) Lack of Gender-Related Differences in Childhood-Onset Schizophrenia. J Am Acad Child Adolesc Psychiatry 55:792-9
Agis, Daniel; Goggins, Maria B; Oishi, Kumiko et al. (2016) Picturing the Size and Site of Stroke With an Expanded National Institutes of Health Stroke Scale. Stroke 47:1459-65
Joshi, Shantanu H; Vizueta, Nathalie; Foland-Ross, Lara et al. (2016) Relationships Between Altered Functional Magnetic Resonance Imaging Activation and Cortical Thickness in Patients With Euthymic Bipolar I Disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 1:507-517
Becker, James T; Kingsley, Lawrence A; Molsberry, Samantha et al. (2015) Cohort Profile: Recruitment cohorts in the neuropsychological substudy of the Multicenter AIDS Cohort Study. Int J Epidemiol 44:1506-16
Ajilore, Olusola; Vizueta, Nathalie; Walshaw, Patricia et al. (2015) Connectome signatures of neurocognitive abnormalities in euthymic bipolar I disorder. J Psychiatr Res 68:37-44
Chung, Yoonho; Jacobson, Aron; He, George et al. (2015) Prodromal Symptom Severity Predicts Accelerated Gray Matter Reduction and Third Ventricle Expansion Among Clinically High Risk Youth Developing Psychotic Disorders. Mol Neuropsychiatry 1:13-22
Masters, Michael; Bruner, Emiliano; Queer, Sarah et al. (2015) Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology. J Anat 227:460-73

Showing the most recent 10 out of 536 publications