This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. UreI from H. pylori is a pH-sensitive Urea transporter. Urea is transported to induce changes in the periplasmic space pH essential for survival and reproduction in low pH environments. Thus, H. pylori is insensitive to the acidic environment of the stomach due to UreI. About 20% of UreI-mediated infections of H. pylori result in gastric or duodenal peptic ulcer disease. Following infection there is a 20-fold increase in the incidence of gastric metaplasia and gastric cancer. UreI, and homologs, have been cloned into pET101 expression vector and expressed in E. coli BL21(43) cells. Protein was solublized using 2% DDM Protein and was purified via C-terminal His tag using a cobalt (Talon) column in the presence of E. coli polar lipid extract. Site directed mutagenesis of His residues supports that the H+-sensing ability of UreI is on the periplasmic portion opposed cytosolic. Initial crystallization conditions were obtained via hanging drop vapor diffusion at 23?C. X-ray diffraction of crystals showed they belong to the orthorhombic space group C222 and diffract to 9?. Since there are already some compounds that inhibit UreI, delineating a high resolution structure would enable higher affinity and selectivity of chemicals that bind to UreI. This is significant because UreI would be a prime target for eradication of gastric infection and subsequent cancer initiation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR015301-09
Application #
8361730
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2011-04-01
Project End
2012-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
9
Fiscal Year
2011
Total Cost
$5,487
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Fallas, Jorge A; Ueda, George; Sheffler, William et al. (2017) Computational design of self-assembling cyclic protein homo-oligomers. Nat Chem 9:353-360
Krotee, Pascal; Rodriguez, Jose A; Sawaya, Michael R et al. (2017) Atomic structures of fibrillar segments of hIAPP suggest tightly mated ?-sheets are important for cytotoxicity. Elife 6:
Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay et al. (2017) Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin. Chemistry 23:1709-1716
Bale, Jacob B; Gonen, Shane; Liu, Yuxi et al. (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353:389-94
AhYoung, Andrew P; Koehl, Antoine; Vizcarra, Christina L et al. (2016) Structure of a putative ClpS N-end rule adaptor protein from the malaria pathogen Plasmodium falciparum. Protein Sci 25:689-701
Hancock, Stephen P; Stella, Stefano; Cascio, Duilio et al. (2016) DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis. PLoS One 11:e0150189
Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco et al. (2016) Engineering an allosteric transcription factor to respond to new ligands. Nat Methods 13:177-83
Kattke, Michele D; Chan, Albert H; Duong, Andrew et al. (2016) Crystal Structure of the Streptomyces coelicolor Sortase E1 Transpeptidase Provides Insight into the Binding Mode of the Novel Class E Sorting Signal. PLoS One 11:e0167763
Jorda, J; Leibly, D J; Thompson, M C et al. (2016) Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein. Chem Commun (Camb) 52:5041-4
Dhayalan, Balamurugan; Fitzpatrick, Ann; Mandal, Kalyaneswar et al. (2016) Efficient Total Chemical Synthesis of (13) C=(18) O Isotopomers of Human Insulin for Isotope-Edited FTIR. Chembiochem 17:415-20

Showing the most recent 10 out of 402 publications