This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Molecular chaperones play essential roles in cellular maintenance and response to stress by protecting unfolded and misfolded proteins until they can be folded or assembled into complexes and then helping promote successful folding and assembly. They also partner with degradation machinery to manage cellular 'quality control'and prevent accumulation of potentially deleterious misfolded products. Chaperones work together to form a complex proteostasis network that is essential for cell survival. The ubiquitous Hsp70 protein family of chaperones prevents incorrect interactions in unfolded proteins that can lead to misfolding or aggregation by cycles of binding and release of client proteins regulated by ATP hydrolysis and further modulated by co-chaperones such as nucleotide exchange factors (NEFs) and Hsp40s. Understanding cellular roles of Hsp70s requires in-depth elucidation of the Hsp70 allosteric mechanism and interactions with co-chaperones;this is essential in order to develop therapeutic strategies based on modulation of Hsp70 chaperones. The goal of our work at the ACERT facility is to obtain crucial information for a full description of the structural ensembles of the E. coli Hsp70, DnaK, throughout its functional allosteric cycle and upon interaction with co-chaperones. We will determine distance profiles between various spin pairs strategically located throughout the protein. These distance profiles will provide information about the structures populated by DnaK in various nucleotide- or substrate- or co-chaperone-bound states. In addition, we will use double electron-electron resonance (DEER) experiments to identify sparsely populated conformers within these ensembles. These profiles, in conjunction with paramagnetic relaxation enhancement NMR data being collected at U. Mass will enable us to map out the allosteric landscape of an Hsp70.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cornell University
Schools of Arts and Sciences
United States
Zip Code
Jain, Rinku; Vanamee, Eva S; Dzikovski, Boris G et al. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ?. J Mol Biol 426:301-8
Pratt, Ashley J; Shin, David S; Merz, Gregory E et al. (2014) Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 111:E4568-76
Georgieva, Elka R; Borbat, Peter P; Ginter, Christopher et al. (2013) Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20:215-21
Airola, Michael V; Sukomon, Nattakan; Samanta, Dipanjan et al. (2013) HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 11:e1001479
Airola, Michael V; Huh, Doowon; Sukomon, Nattakan et al. (2013) Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 425:886-901
Sun, Yan; Zhang, Ziwei; Grigoryants, Vladimir M et al. (2012) The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 51:8530-41
Yu, Renyuan Pony; Darmon, Jonathan M; Hoyt, Jordan M et al. (2012) High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. ACS Catal 2:1760-1764
Dzikovski, Boris; Tipikin, Dmitriy; Freed, Jack (2012) Conformational distributions and hydrogen bonding in gel and frozen lipid bilayers: a high frequency spin-label ESR study. J Phys Chem B 116:6694-706
Gaffney, Betty J; Bradshaw, Miles D; Frausto, Stephen D et al. (2012) Locating a lipid at the portal to the lipoxygenase active site. Biophys J 103:2134-44
Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey et al. (2012) Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies. J Am Chem Soc 134:9209-18

Showing the most recent 10 out of 72 publications