This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Little is known about structure and function-associated conformational changes in coronavirus virion proteins. In addition to providing the framework for the virion, the four conserved structural proteins S, E, M and N are essential in assembly, RNA packaging, egress and ingress of the virion. We propose to characterize the two- and three- dimensional structure of the coronavirus structural protein complexes within the virion. Changes that occur during fusion activation will also be studied. The coronavirus that causes severe acute resporatory syndrome outbreak of 2002-2003 was marked by high mortality and morbidity. The reservoir of this virus has not been established. Understanding of how the viral proteins function within the virion and during interaction with the host would prove very useful in rational antiviral drug design. We have reconstructed the structural protein complexes of three arenaviruses, which are pleomorphic enveloped particles 40-500 nm in diameter, using electron cryomicroscopy. Preliminary two- and three-dimensional images of the SARS structural proteins are in refinement. The NRAMM component of this project would consist of imaging particles from the three coronavirus families: feline coronavirus (group I), murine coronavirus (group II) and avian infectious bronchitis virus (group III) for comparison with SARS coronavirus (distantly related to group II or perhaps assigned as the only member of group IV). Results of the arenavirus cryo-EM studies are being prepared for publication. Several protein specimens have been prepared as vitreous ice layers suspended over holey carbon substrates. Datasets have been acquired from several varieties of corona virus using Leginon. The data is being analyzed by the investigator. This work should be completed within the next month and will then be written up for publication.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR017573-10
Application #
8362481
Study Section
Special Emphasis Panel (ZRG1-CB-B (40))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
10
Fiscal Year
2011
Total Cost
$12,853
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Kulczyk, Arkadiusz W; Moeller, Arne; Meyer, Peter et al. (2017) Cryo-EM structure of the replisome reveals multiple interactions coordinating DNA synthesis. Proc Natl Acad Sci U S A 114:E1848-E1856
Sherman, Michael B; Kakani, Kishore; Rochon, D'Ann et al. (2017) Stability of Cucumber Necrosis Virus at the Quasi-6-Fold Axis Affects Zoospore Transmission. J Virol 91:
Short, James R; Speir, Jeffrey A; Gopal, Radhika et al. (2016) Role of Mitochondrial Membrane Spherules in Flock House Virus Replication. J Virol 90:3676-83
Razinkov, Ivan; Dandey, Venkat; Wei, Hui et al. (2016) A new method for vitrifying samples for cryoEM. J Struct Biol 195:190-198
Guenaga, Javier; de Val, Natalia; Tran, Karen et al. (2015) Well-ordered trimeric HIV-1 subtype B and C soluble spike mimetics generated by negative selection display native-like properties. PLoS Pathog 11:e1004570
McCullough, John; Clippinger, Amy K; Talledge, Nathaniel et al. (2015) Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350:1548-51
McNulty, Reginald; Lokareddy, Ravi Kumar; Roy, Ankoor et al. (2015) Architecture of the Complex Formed by Large and Small Terminase Subunits from Bacteriophage P22. J Mol Biol 427:3285-3299
Lee, Jeong Hyun; Leaman, Daniel P; Kim, Arthur S et al. (2015) Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. Nat Commun 6:8167
Derking, Ronald; Ozorowski, Gabriel; Sliepen, Kwinten et al. (2015) Comprehensive antigenic map of a cleaved soluble HIV-1 envelope trimer. PLoS Pathog 11:e1004767
Grover, Rajesh K; Zhu, Xueyong; Nieusma, Travis et al. (2014) A structurally distinct human mycoplasma protein that generically blocks antigen-antibody union. Science 343:656-661

Showing the most recent 10 out of 187 publications