This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Escherichia coli cells containing artificial subcellular structures (bundles of the actin-like filament protein ParM, tobacco mosaic virus particles and polyester inclusions) will be examined using X-ray tomography to investigate bacterial subcellular organisation and the potential use of such structures as cloneable labels.
We aim to use X-ray tomography to investigate the subcellular organisation of Escherichia coli bacteria containing three different artificial subcellular structures: bundles of ParM filaments produced by overexpression of the actin-like ParM protein 2;tobacco mosaic virus (TMV) particles;and polyester inclusions generated by a poly-hydroxyalkanoate synthase enzyme. The latter two structures could potentially be adapted as cloneable labels if they prove to be identifiable in X-ray tomographic images.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BST-K (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Anatomy/Cell Biology
Schools of Medicine
San Francisco
United States
Zip Code
Do, Myan; Isaacson, Samuel A; McDermott, Gerry et al. (2015) Imaging and characterizing cells using tomography. Arch Biochem Biophys 581:111-21
McHugh, Emma; Batinovic, Steven; Hanssen, Eric et al. (2015) A repeat sequence domain of the ring-exported protein-1 of Plasmodium falciparum controls export machinery architecture and virulence protein trafficking. Mol Microbiol 98:1101-14
Le Gros, Mark A; McDermott, Gerry; Cinquin, Bertrand P et al. (2014) Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source. J Synchrotron Radiat 21:1370-7
Dasgupta, Sabyasachi; Auth, Thorsten; Gov, Nir S et al. (2014) Membrane-wrapping contributions to malaria parasite invasion of the human erythrocyte. Biophys J 107:43-54
Smith, Elizabeth A; Cinquin, Bertrand P; Do, Myan et al. (2014) Correlative cryogenic tomography of cells using light and soft x-rays. Ultramicroscopy 143:33-40
Hanssen, Eric; Dekiwadia, Chaitali; Riglar, David T et al. (2013) Electron tomography of Plasmodium falciparum merozoites reveals core cellular events that underpin erythrocyte invasion. Cell Microbiol 15:1457-72
Smith, Elizabeth A; Cinquin, Bertrand P; McDermott, Gerry et al. (2013) Correlative microscopy methods that maximize specimen fidelity and data completeness, and improve molecular localization capabilities. J Struct Biol 184:12-20
Parkinson, Dilworth Y; Epperly, Lindsay R; McDermott, Gerry et al. (2013) Nanoimaging cells using soft X-ray tomography. Methods Mol Biol 950:457-81
Isaacson, Samuel A; Larabell, Carolyn A; Le Gros, Mark A et al. (2013) The influence of spatial variation in chromatin density determined by X-ray tomograms on the time to find DNA binding sites. Bull Math Biol 75:2093-117
McDermott, Gerry; Le Gros, Mark A; Larabell, Carolyn A (2012) Visualizing cell architecture and molecular location using soft x-ray tomography and correlated cryo-light microscopy. Annu Rev Phys Chem 63:225-39

Showing the most recent 10 out of 28 publications