Environmental exposure to metals, including manganese, is an important risk factor for the development of parkinsonism (PS) in workers of welding or related industries. However, the relevance of metal-mediated PS to idiopathic Parkinson's disease (iPD) remains to be characterized. Clinically, differential diagnosis between metal-related PS and iPD is difficult, even in the best hands. This proposal is focused on discovering plasma biochemical markers unique to welders for differential diagnosis of various PS, monitoring PS progression, and identification of the population at risk for developing disabling PS. The techniques to be utilized are state-of-the-art proteomics that are actively employed currently in our laboratory in revealing biomarkers specific to iPD in both human brain tissue and cerebrospinal fluid (CSF).
Three specific aims are designed for the current proposal: 1) to differentiate PS in the plasma samples of welders from those of iPD using brain/CSF specific markers identified in iPD patients, 2) to develop plasma biomarkers unique to PS progression as well as early stages in welders using targeted and nonbiased quantitative proteomics, and 3) to confirm and validate PS plasma biomarkers in welders, which is a key process of biomarker discovery. The significance of this investigation includes: 1) identification of markers unique to PS, both in symptomatic welders and those at risk for developing PS, will help diagnose and monitor these patients as well as make it possible to remove the subjects at risk from the environment, thereby preventing them from developing PS;2) identification of protein markers unique to PS secondary to metal exposure likely suggests novel pathogenesis and therapeutic targets for the disease process;and 3) PS markers, if identified, can be widely utilized, given that plasma-based assays can be readily implemented in a clinical setting, even in developing countries or in remote areas of developed countries.

Public Health Relevance

Parkinsonism (PS) secondary to metal exposure is an incredibly important medical legal issue. Biochemical markers unique to early stages of PS may make it possible to remove the subjects at risk from the environment, thereby preventing them from developing disabling parkinsonism in later years.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004696-26
Application #
8451557
Study Section
Special Emphasis Panel (ZES1-LKB-D)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
26
Fiscal Year
2013
Total Cost
$309,059
Indirect Cost
$117,734
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Rooney, James P K; Woods, Nancy F; Martin, Michael D et al. (2018) Genetic polymorphisms of GRIN2A and GRIN2B modify the neurobehavioral effects of low-level lead exposure in children. Environ Res 165:1-10
Chang, Yu-Chi; Cole, Toby B; Costa, Lucio G (2018) Prenatal and early-life diesel exhaust exposure causes autism-like behavioral changes in mice. Part Fibre Toxicol 15:18
Criswell, Susan R; Nielsen, Susan Searles; Warden, Mark et al. (2018) [18F]FDOPA positron emission tomography in manganese-exposed workers. Neurotoxicology 64:43-49
Wang, Hao; Zhang, Liang; Abel, Glen M et al. (2018) Cadmium Exposure Impairs Cognition and Olfactory Memory in Male C57BL/6 Mice. Toxicol Sci 161:87-102
Criswell, Susan R; Warden, Mark N; Searles Nielsen, Susan et al. (2018) Selective D2 receptor PET in manganese-exposed workers. Neurology 91:e1022-e1030
Meador, James P; Yeh, Andrew; Gallagher, Evan P (2018) Adverse metabolic effects in fish exposed to contaminants of emerging concern in the field and laboratory. Environ Pollut 236:850-861
Ma, Eva Y; Heffern, Kevin; Cheresh, Julia et al. (2018) Differential copper-induced death and regeneration of olfactory sensory neuron populations and neurobehavioral function in larval zebrafish. Neurotoxicology 69:141-151
Heffern, Kevin; Tierney, Keith; Gallagher, Evan P (2018) Comparative effects of cadmium, zinc, arsenic and chromium on olfactory-mediated neurobehavior and gene expression in larval zebrafish (Danio rerio). Aquat Toxicol 201:83-90
Racette, Brad A; Gross, Anat; Criswell, Susan R et al. (2018) A screening tool to detect clinical manganese neurotoxicity. Neurotoxicology 64:12-18
Barrett, P M; Hull, E A; King, C E et al. (2018) Increased exposure of plankton to arsenic in contaminated weakly-stratified lakes. Sci Total Environ 625:1606-1614

Showing the most recent 10 out of 455 publications