Environmental exposure to metals, including manganese, is an important risk factor for the development of parkinsonism (PS) in workers of welding or related industries. However, the relevance of metal-mediated PS to idiopathic Parkinson's disease (iPD) remains to be characterized. Clinically, differential diagnosis between metal-related PS and iPD is difficult, even in the best hands. This proposal is focused on discovering plasma biochemical markers unique to welders for differential diagnosis of various PS, monitoring PS progression, and identification of the population at risk for developing disabling PS. The techniques to be utilized are state-of-the-art proteomics that are actively employed currently in our laboratory in revealing biomarkers specific to iPD in both human brain tissue and cerebrospinal fluid (CSF).
Three specific aims are designed for the current proposal: 1) to differentiate PS in the plasma samples of welders from those of iPD using brain/CSF specific markers identified in iPD patients, 2) to develop plasma biomarkers unique to PS progression as well as early stages in welders using targeted and nonbiased quantitative proteomics, and 3) to confirm and validate PS plasma biomarkers in welders, which is a key process of biomarker discovery. The significance of this investigation includes: 1) identification of markers unique to PS, both in symptomatic welders and those at risk for developing PS, will help diagnose and monitor these patients as well as make it possible to remove the subjects at risk from the environment, thereby preventing them from developing PS;2) identification of protein markers unique to PS secondary to metal exposure likely suggests novel pathogenesis and therapeutic targets for the disease process;and 3) PS markers, if identified, can be widely utilized, given that plasma-based assays can be readily implemented in a clinical setting, even in developing countries or in remote areas of developed countries.

Public Health Relevance

Parkinsonism (PS) secondary to metal exposure is an incredibly important medical legal issue. Biochemical markers unique to early stages of PS may make it possible to remove the subjects at risk from the environment, thereby preventing them from developing disabling parkinsonism in later years.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LKB-D)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
United States
Zip Code
Marsillach, Judit; Suzuki, Stephanie M; Richter, Rebecca J et al. (2014) Human valacyclovir hydrolase/biphenyl hydrolase-like protein is a highly efficient homocysteine thiolactonase. PLoS One 9:e110054
Lundin, Jessica I; Checkoway, Harvey; Criswell, Susan R et al. (2014) Screening for early detection of parkinsonism using a self-administered questionnaire: a cross-sectional epidemiologic study. Neurotoxicology 45:232-7
Racette, Brad A (2014) Manganism in the 21st century: the Hanninen lecture. Neurotoxicology 45:201-7
Kang, Jun Won; Doty, Sharon Lafferty (2014) Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate. Can J Microbiol 60:487-90
Costa, Lucio G; de Laat, Rian; Tagliaferri, Sara et al. (2014) A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicol Lett 230:282-94
Maryoung, Lindley A; Lavado, Ramon; Schlenk, Daniel (2014) Impacts of hypersaline acclimation on the acute toxicity of the organophosphate chlorpyrifos to salmonids. Aquat Toxicol 152:284-90
Cole, Toby B; Li, Wan-Fen; Co, Aila L et al. (2014) Repeated gestational exposure of mice to chlorpyrifos oxon is associated with paraoxonase 1 (PON1) modulated effects in maternal and fetal tissues. Toxicol Sci 141:409-22
Woods, James S; Heyer, Nicholas J; Russo, Joan E et al. (2014) Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: summary findings from the Casa Pia Children's Amalgam clinical trial. Neurotoxicology 44:288-302
Woods, James S; Heyer, Nicholas J; Russo, Joan E et al. (2014) Genetic polymorphisms of catechol-O-methyltransferase modify the neurobehavioral effects of mercury in children. J Toxicol Environ Health A 77:293-312
Stewart, Tessandra; Sui, Yu-Ting; Gonzalez-Cuyar, Luis F et al. (2014) Cheek cell-derived *-synuclein and DJ-1 do not differentiate Parkinson's disease from control. Neurobiol Aging 35:418-20

Showing the most recent 10 out of 381 publications