Project 1 is concerned with assessment and prediction of exposure of human and ecological receptors to contaminants in the environment. Our goals are to;i) determine how environmental fate and transport processes that act upon contaminants control the level and duration of potential exposure and, ii) develop useful methods and approaches to estimate exposure concentrations and, in collaboration with other Superfund projects, biological effects. Specific objectives include providing fundamental knowledge about the processes controlling the transport and transformation of contaminants, especially those related to complex mixtures;developing molecular-based and biosensor technologies and integrated tools for monitoring bioremediation and natural attenuation;and developing new models of reactive transport in groundwater and applying them to predict chemical exposure risks and remediation. We will consider three complex mixtures and their constituents as examples of Superfund-relevant and emerging issues related to fate, transport and transformation of contaminants in the environment. These include;i) biosolids from waste water treatment that contain pharmaceuticals, personal care and household products such as TCC/TCS and PBDEs, nanoparticles, and other chemicals of concern;ii) biofuels and fuel additives that include oxygenates;and iii) formulated pesticides such as pyrethroids. This grouping of compounds allows us to examine in a unique and integrated way the roles of particle size, surface characteristics, and co-occurring substances on contaminant fate and transport. Based on our research we will develop general principles and approaches that will be applicable to broader groups of contaminants not considered here and help predict emergence of new environmental contaminants.

Public Health Relevance

This project is relevant to public health because it will result in development of tools for assessment or prediction of the exposure of human populations to current and emerging contaminants of concern to the Superfund mission.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-26
Application #
8375375
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
26
Fiscal Year
2012
Total Cost
$236,652
Indirect Cost
$83,935
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Bettaieb, Ahmed; Koike, Shinichiro; Chahed, Samah et al. (2017) Podocyte-specific soluble epoxide hydrolase deficiency in mice attenuates acute kidney injury. FEBS J 284:1970-1986
Frederich, Bert J; Timofeyev, Valeriy; Thai, Phung N et al. (2017) Electrotaxis of cardiac progenitor cells, cardiac fibroblasts, and induced pluripotent stem cell-derived cardiac progenitor cells requires serum and is directed via PI3'K pathways. Heart Rhythm 14:1685-1692
Denison, Michael S; Faber, Samantha C (2017) And Now for Something Completely Different: Diversity in Ligand-Dependent Activation of Ah Receptor Responses. Curr Opin Toxicol 2:124-131
Islam, Oliul; Patil, Prashanth; Goswami, Sumanta K et al. (2017) Inhibitors of soluble epoxide hydrolase minimize ischemia-reperfusion-induced cardiac damage in normal, hypertensive, and diabetic rats. Cardiovasc Ther 35:
Bettaieb, Ahmed; Koike, Shinichiro; Hsu, Ming-Fo et al. (2017) Soluble epoxide hydrolase in podocytes is a significant contributor to renal function under hyperglycemia. Biochim Biophys Acta 1861:2758-2765
Hvorecny, Kelli L; Bahl, Christopher D; Kitamura, Seiya et al. (2017) Active-Site Flexibility and Substrate Specificity in a Bacterial Virulence Factor: Crystallographic Snapshots of an Epoxide Hydrolase. Structure 25:697-707.e4
Fan, Jinzhen; Villarreal, Fernando; Weyers, Brent et al. (2017) Multi-dimensional studies of synthetic genetic promoters enabled by microfluidic impact printing. Lab Chip 17:2198-2207
Zhang, Yue; Hong, Gina; Lee, Kin Sing Stephen et al. (2017) Inhibition of soluble epoxide hydrolase augments astrocyte release of vascular endothelial growth factor and neuronal recovery after oxygen-glucose deprivation. J Neurochem 140:814-825
Vasylieva, Natalia; Barnych, Bogdan; Wan, Debin et al. (2017) Hydroxy-fipronil is a new urinary biomarker of exposure to fipronil. Environ Int 103:91-98
Rand, Amy A; Barnych, Bogdan; Morisseau, Christophe et al. (2017) Cyclooxygenase-derived proangiogenic metabolites of epoxyeicosatrienoic acids. Proc Natl Acad Sci U S A 114:4370-4375

Showing the most recent 10 out of 1104 publications