Project 1 is concerned with assessment and prediction of exposure of human and ecological receptors to contaminants in the environment. Our goals are to;i) determine how environmental fate and transport processes that act upon contaminants control the level and duration of potential exposure and, ii) develop useful methods and approaches to estimate exposure concentrations and, in collaboration with other Superfund projects, biological effects. Specific objectives include providing fundamental knowledge about the processes controlling the transport and transformation of contaminants, especially those related to complex mixtures;developing molecular-based and biosensor technologies and integrated tools for monitoring bioremediation and natural attenuation;and developing new models of reactive transport in groundwater and applying them to predict chemical exposure risks and remediation. We will consider three complex mixtures and their constituents as examples of Superfund-relevant and emerging issues related to fate, transport and transformation of contaminants in the environment. These include;i) biosolids from waste water treatment that contain pharmaceuticals, personal care and household products such as TCC/TCS and PBDEs, nanoparticles, and other chemicals of concern;ii) biofuels and fuel additives that include oxygenates;and iii) formulated pesticides such as pyrethroids. This grouping of compounds allows us to examine in a unique and integrated way the roles of particle size, surface characteristics, and co-occurring substances on contaminant fate and transport. Based on our research we will develop general principles and approaches that will be applicable to broader groups of contaminants not considered here and help predict emergence of new environmental contaminants.

Public Health Relevance

This project is relevant to public health because it will result in development of tools for assessment or prediction of the exposure of human populations to current and emerging contaminants of concern to the Superfund mission.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-27
Application #
8450313
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
27
Fiscal Year
2013
Total Cost
$225,402
Indirect Cost
$80,018
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Patchin, Esther Shin; Anderson, Donald S; Silva, Rona M et al. (2016) Size-Dependent Deposition, Translocation, and Microglial Activation of Inhaled Silver Nanoparticles in the Rodent Nose and Brain. Environ Health Perspect 124:1870-1875
Gee, Shirley J; Kennedy, Ivan R; Lee, N Alice et al. (2016) Immunoanalysis for environmental monitoring and human health. Anal Bioanal Chem 408:5959-61
Bahl, Christopher D; Hvorecny, Kelli L; Morisseau, Christophe et al. (2016) Visualizing the Mechanism of Epoxide Hydrolysis by the Bacterial Virulence Enzyme Cif. Biochemistry 55:788-97
Chapman, Christopher A R; Chen, Hao; Stamou, Marianna et al. (2016) Mechanisms of Reduced Astrocyte Surface Coverage in Cortical Neuron-Glia Co-cultures on Nanoporous Gold Surfaces. Cell Mol Bioeng 9:433-442
Das, Gautom K; Anderson, Donald S; Wallis, Chris D et al. (2016) Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung. Nanoscale 8:11518-30
Ahn, Ki Chang; Ranganathan, Anupama; Bever, Candace S et al. (2016) Detection of the Antimicrobial Triclosan in Environmental Samples by Immunoassay. Environ Sci Technol 50:3754-61
Ronjat, Michel; Feng, Wei; Dardevet, Lucie et al. (2016) In cellulo phosphorylation induces pharmacological reprogramming of maurocalcin, a cell-penetrating venom peptide. Proc Natl Acad Sci U S A 113:E2460-8
Wu, Xianai; Yang, Jun; Morisseau, Christophe et al. (2016) 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) Decreases Hepatic and Systemic Ratios of Epoxide to Diol Metabolites of Unsaturated Fatty Acids in Male Rats. Toxicol Sci 152:309-22
Croes, Kim; Debaillie, Pieterjan; Van den Bril, Bo et al. (2016) Assessment of estrogenic activity in PM₁₀ air samples with the ERE-CALUX bioassay: Method optimization and implementation at an urban location in Flanders (Belgium). Chemosphere 144:392-8
Ren, Qian; Ma, Min; Ishima, Tamaki et al. (2016) Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress. Proc Natl Acad Sci U S A 113:E1944-52

Showing the most recent 10 out of 1043 publications