Project 1 is concerned with assessment and prediction of exposure of human and ecological receptors to contaminants in the environment. Our goals are to;i) determine how environmental fate and transport processes that act upon contaminants control the level and duration of potential exposure and, ii) develop useful methods and approaches to estimate exposure concentrations and, in collaboration with other Superfund projects, biological effects. Specific objectives include providing fundamental knowledge about the processes controlling the transport and transformation of contaminants, especially those related to complex mixtures;developing molecular-based and biosensor technologies and integrated tools for monitoring bioremediation and natural attenuation;and developing new models of reactive transport in groundwater and applying them to predict chemical exposure risks and remediation. We will consider three complex mixtures and their constituents as examples of Superfund-relevant and emerging issues related to fate, transport and transformation of contaminants in the environment. These include;i) biosolids from waste water treatment that contain pharmaceuticals, personal care and household products such as TCC/TCS and PBDEs, nanoparticles, and other chemicals of concern;ii) biofuels and fuel additives that include oxygenates;and iii) formulated pesticides such as pyrethroids. This grouping of compounds allows us to examine in a unique and integrated way the roles of particle size, surface characteristics, and co-occurring substances on contaminant fate and transport. Based on our research we will develop general principles and approaches that will be applicable to broader groups of contaminants not considered here and help predict emergence of new environmental contaminants.

Public Health Relevance

This project is relevant to public health because it will result in development of tools for assessment or prediction of the exposure of human populations to current and emerging contaminants of concern to the Superfund mission.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
United States
Zip Code
Mao, Yuxin; Pan, Yang; Li, Xuan et al. (2018) High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip. Lab Chip 18:2720-2729
Burmistrov, Vladimir; Morisseau, Christophe; Harris, Todd R et al. (2018) Effects of adamantane alterations on soluble epoxide hydrolase inhibition potency, physical properties and metabolic stability. Bioorg Chem 76:510-527
Stamou, Marianna; Grodzki, Ana Cristina; van Oostrum, Marc et al. (2018) Fc gamma receptors are expressed in the developing rat brain and activate downstream signaling molecules upon cross-linking with immune complex. J Neuroinflammation 15:7
Huo, Jingqian; Li, Zhenfeng; Wan, Debin et al. (2018) Development of a Highly Sensitive Direct Competitive Fluorescence Enzyme Immunoassay Based on a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of 3-Phenoxybenzoic Acid in Urine. J Agric Food Chem 66:11284-11290
Zamuruyev, Konstantin O; Borras, Eva; Pettit, Dayna R et al. (2018) Effect of temperature control on the metabolite content in exhaled breath condensate. Anal Chim Acta 1006:49-60
Zamuruyev, Konstantin O; Schmidt, Alexander J; Borras, Eva et al. (2018) Power-efficient self-cleaning hydrophilic condenser surface for portable exhaled breath condensate (EBC) metabolomic sampling. J Breath Res 12:036020
Philippat, Claire; Barkoski, Jacqueline; Tancredi, Daniel J et al. (2018) Prenatal exposure to organophosphate pesticides and risk of autism spectrum disorders and other non-typical development at 3 years in a high-risk cohort. Int J Hyg Environ Health 221:548-555
Burmistrov, Vladimir; Morisseau, Christophe; Pitushkin, Dmitry et al. (2018) Adamantyl thioureas as soluble epoxide hydrolase inhibitors. Bioorg Med Chem Lett 28:2302-2313
Tu, Ranran; Armstrong, Jillian; Lee, Kin Sing Stephen et al. (2018) Soluble epoxide hydrolase inhibition decreases reperfusion injury after focal cerebral ischemia. Sci Rep 8:5279
Wang, Weicang; Yang, Jun; Zhang, Jianan et al. (2018) Lipidomic profiling reveals soluble epoxide hydrolase as a therapeutic target of obesity-induced colonic inflammation. Proc Natl Acad Sci U S A 115:5283-5288

Showing the most recent 10 out of 1149 publications