It is the goal of this project Biosensors, to apply new and emerging technologies to implement bioassays that our colleagues at Davis have developed, with improvements in speed and/or sensitivity compared to conventional methods. Several new schemes for detection will be tested, including a nanowell format for trapping and interrogating our non-bleaching nanoparticle labels for DNA and immune assays;a magnetic/luminescent nanoparticle format for DNA assays;and a nanostructured liquid core waveguide for enhancement of fluorescence detection. The targets will include the pyrethroid metabolite 3-PBA, emerging problem compounds such as TCC, TCS and PBDE, and genes for microbes that are used in bioremediation activities. A sensor for TCDD and related compounds will be developed based on AhR technology.

Public Health Relevance

Monitoring the release of toxic compounds from Superfund sites and the exposure of vulnerable populations is crucial to ensuring the health of the environment and humans. Furthermore, it is important to monitor the success of clean-up efforts such as bio-remediation and to assess the potential for toxic compound release during the operation of chemical methods such as thermal remediation. The Biomarker projects at UC Davis have developed a range of techniques for measuring the presence of toxins in air, water and soil samples, and as human metabolites;this project will take the next step in implementing the assays in new formats that can be applied to real-world problems of environmental monitoring.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
United States
Zip Code
Fritsch, Erika B; Stegeman, John J; Goldstone, Jared V et al. (2015) Expression and function of ryanodine receptor related pathways in PCB tolerant Atlantic killifish (Fundulus heteroclitus) from New Bedford Harbor, MA, USA. Aquat Toxicol 159:156-66
Flannery, Brenna M; Silverman, Jill L; Bruun, Donald A et al. (2015) Behavioral assessment of NIH Swiss mice acutely intoxicated with tetramethylenedisulfotetramine. Neurotoxicol Teratol 47:36-45
Anderson, Donald S; Silva, Rona M; Lee, Danielle et al. (2015) Persistence of silver nanoparticles in the rat lung: Influence of dose, size, and chemical composition. Nanotoxicology 9:591-602
Yang, Jun; Bratt, Jennifer; Franzi, Lisa et al. (2015) Soluble epoxide hydrolase inhibitor attenuates inflammation and airway hyperresponsiveness in mice. Am J Respir Cell Mol Biol 52:46-55
Davidson, R Andrew; Anderson, Donald S; Van Winkle, Laura S et al. (2015) Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy. J Phys Chem A 119:281-9
Van Winkle, Laura S; Bein, Keith; Anderson, Donald et al. (2015) Biological dose response to PM2.5: effect of particle extraction method on platelet and lung responses. Toxicol Sci 143:349-59
Radhakrishnan, Rajeswaran; Suni, Ian I; Bever, Candace S et al. (2014) Impedance Biosensors: Applications to Sustainability and Remaining Technical Challenges. ACS Sustain Chem Eng 2:1649-1655
Das, Gautom Kumar; Bonifacio, Cecile S; De Rojas, Julius et al. (2014) Ultra-long Magnetic Nanochains for Highly Efficient Arsenic Removal from Water. J Mater Chem A Mater Energy Sustain 2:12974-12981
DeGroot, Danica E; Hayashi, Ai; Denison, Michael S (2014) Lack of ligand-selective binding of the aryl hydrocarbon receptor to putative DNA binding sites regulating expression of Bax and paraoxonase 1 genes. Arch Biochem Biophys 541:13-20
Ogunyoku, Temitope A; Young, Thomas M (2014) Removal of triclocarban and triclosan during municipal biosolid production. Water Environ Res 86:197-203

Showing the most recent 10 out of 872 publications