The over-arching objectives of this project are to develop and apply biomarker assays for evaluating human reproductive health at the population level. Risk to reproductive health is an area of growing public concern. Initially, this project focuses on the development of biomarker assays that can be applied to non-clinical situations and permit epidemiological studies to include prospective evaluations of individual women's reproductive health. The same biomarker assays validated for use in humans are also validated for use in the nonhuman primate animal model because the species-specific aspects of human reproduction often require the use of the laboratory macaque. These assays are then used to conduct in vivo experiments using the non-human primate animal model to fill important gaps in our understanding of specific environmental toxicants including targets of toxicity and exposure risks. The development of biomarkers for effect has subsequently led to the development and validation of biomarker assays for exposure to reproductive health risks and the identification of new environmental toxicants. All assays are adapted to automated platforms so that they are immediately available for use in all research and clinical centers, in vivo experiments conducted to confirm and characterize newly identified reproductive hazards and in vitro experiments using human cells lines are used to develop a deeper understanding of their mechanism(s) of action. Whenever possible, archival biological samples from previous or concurrent epidemiological studies are used in order to pose population-based queries that otherwise could not be addressed within the budget of a single project. Cooperation and collaboration with other projects is emphasized.

Public Health Relevance

This project addresses the real and potential deleterious effects of environmental hazards on human reproductive health, concentrating on environmental risks to human reproduction and development at the population-based level.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-27
Application #
8450323
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
27
Fiscal Year
2013
Total Cost
$146,169
Indirect Cost
$52,361
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Patchin, Esther Shin; Anderson, Donald S; Silva, Rona M et al. (2016) Size-Dependent Deposition, Translocation, and Microglial Activation of Inhaled Silver Nanoparticles in the Rodent Nose and Brain. Environ Health Perspect 124:1870-1875
Gee, Shirley J; Kennedy, Ivan R; Lee, N Alice et al. (2016) Immunoanalysis for environmental monitoring and human health. Anal Bioanal Chem 408:5959-61
Bahl, Christopher D; Hvorecny, Kelli L; Morisseau, Christophe et al. (2016) Visualizing the Mechanism of Epoxide Hydrolysis by the Bacterial Virulence Enzyme Cif. Biochemistry 55:788-97
Chapman, Christopher A R; Chen, Hao; Stamou, Marianna et al. (2016) Mechanisms of Reduced Astrocyte Surface Coverage in Cortical Neuron-Glia Co-cultures on Nanoporous Gold Surfaces. Cell Mol Bioeng 9:433-442
Das, Gautom K; Anderson, Donald S; Wallis, Chris D et al. (2016) Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung. Nanoscale 8:11518-30
Ahn, Ki Chang; Ranganathan, Anupama; Bever, Candace S et al. (2016) Detection of the Antimicrobial Triclosan in Environmental Samples by Immunoassay. Environ Sci Technol 50:3754-61
Ronjat, Michel; Feng, Wei; Dardevet, Lucie et al. (2016) In cellulo phosphorylation induces pharmacological reprogramming of maurocalcin, a cell-penetrating venom peptide. Proc Natl Acad Sci U S A 113:E2460-8
Wu, Xianai; Yang, Jun; Morisseau, Christophe et al. (2016) 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) Decreases Hepatic and Systemic Ratios of Epoxide to Diol Metabolites of Unsaturated Fatty Acids in Male Rats. Toxicol Sci 152:309-22
Croes, Kim; Debaillie, Pieterjan; Van den Bril, Bo et al. (2016) Assessment of estrogenic activity in PM₁₀ air samples with the ERE-CALUX bioassay: Method optimization and implementation at an urban location in Flanders (Belgium). Chemosphere 144:392-8
Ren, Qian; Ma, Min; Ishima, Tamaki et al. (2016) Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress. Proc Natl Acad Sci U S A 113:E1944-52

Showing the most recent 10 out of 1043 publications