Funding from the Superfund Basic Research Program (SBRP) requires Research Translational efforts that facilitate application of basic research findings to the improvement of ecological and environmental health that has been degraded by the presence of toxic chemicals that were purposely or negligently released. One very successful example of research translation at UC Davis involves remediation of MTBE-contamination of aquifers around gasoline stations. We isolated a natural bacterium that degrades MTBE, then optimized and validated its use in remediation of aquifers around gasoline stations. This activity grew from strong partnerships with Environmental Resolutions, Inc, Regensis and governmental agencies, (Region 5 Water Board, and the State Health Department). This project of course involved community outreach and stake holder involvement. We continue to develop such partnerships with the extension of this project to a community water source. Other RT activities undertaken (see Progress Report) and proposed involve communication to public, government partnering and technology transfer. The translational efforts involve distribution of information, technology transfer as discussed above, and development of IP.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-27
Application #
8450326
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
27
Fiscal Year
2013
Total Cost
$73,036
Indirect Cost
$26,831
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Patchin, Esther Shin; Anderson, Donald S; Silva, Rona M et al. (2016) Size-Dependent Deposition, Translocation, and Microglial Activation of Inhaled Silver Nanoparticles in the Rodent Nose and Brain. Environ Health Perspect 124:1870-1875
Gee, Shirley J; Kennedy, Ivan R; Lee, N Alice et al. (2016) Immunoanalysis for environmental monitoring and human health. Anal Bioanal Chem 408:5959-61
Bahl, Christopher D; Hvorecny, Kelli L; Morisseau, Christophe et al. (2016) Visualizing the Mechanism of Epoxide Hydrolysis by the Bacterial Virulence Enzyme Cif. Biochemistry 55:788-97
Chapman, Christopher A R; Chen, Hao; Stamou, Marianna et al. (2016) Mechanisms of Reduced Astrocyte Surface Coverage in Cortical Neuron-Glia Co-cultures on Nanoporous Gold Surfaces. Cell Mol Bioeng 9:433-442
Das, Gautom K; Anderson, Donald S; Wallis, Chris D et al. (2016) Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung. Nanoscale 8:11518-30
Ahn, Ki Chang; Ranganathan, Anupama; Bever, Candace S et al. (2016) Detection of the Antimicrobial Triclosan in Environmental Samples by Immunoassay. Environ Sci Technol 50:3754-61
Ronjat, Michel; Feng, Wei; Dardevet, Lucie et al. (2016) In cellulo phosphorylation induces pharmacological reprogramming of maurocalcin, a cell-penetrating venom peptide. Proc Natl Acad Sci U S A 113:E2460-8
Wu, Xianai; Yang, Jun; Morisseau, Christophe et al. (2016) 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) Decreases Hepatic and Systemic Ratios of Epoxide to Diol Metabolites of Unsaturated Fatty Acids in Male Rats. Toxicol Sci 152:309-22
Croes, Kim; Debaillie, Pieterjan; Van den Bril, Bo et al. (2016) Assessment of estrogenic activity in PM₁₀ air samples with the ERE-CALUX bioassay: Method optimization and implementation at an urban location in Flanders (Belgium). Chemosphere 144:392-8
Ren, Qian; Ma, Min; Ishima, Tamaki et al. (2016) Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress. Proc Natl Acad Sci U S A 113:E1944-52

Showing the most recent 10 out of 1043 publications