Project 1 is concerned with assessment and prediction of exposure of human and ecological receptors to contaminants in the environment. Our goals are to;i) determine how environmental fate and transport processes that act upon contaminants control the level and duration of potential exposure and, ii) develop useful methods and approaches to estimate exposure concentrations and, in collaboration with other Superfund projects, biological effects. Specific objectives include providing fundamental knowledge about the processes controlling the transport and transformation of contaminants, especially those related to complex mixtures;developing molecular-based and biosensor technologies and integrated tools for monitoring bioremediation and natural attenuation;and developing new models of reactive transport in groundwater and applying them to predict chemical exposure risks and remediation. We will consider three complex mixtures and their constituents as examples of Superfund-relevant and emerging issues related to fate, transport and transformation of contaminants in the environment. These include;i) biosolids from waste water treatment that contain pharmaceuticals, personal care and household products such as TCC/TCS and PBDEs, nanoparticles, and other chemicals of concern;ii) biofuels and fuel additives that include oxygenates;and iii) formulated pesticides such as pyrethroids. This grouping of compounds allows us to examine in a unique and integrated way the roles of particle size, surface characteristics, and co-occurring substances on contaminant fate and transport. Based on our research we will develop general principles and approaches that will be applicable to broader groups of contaminants not considered here and help predict emergence of new environmental contaminants.

Public Health Relevance

This project is relevant to public health because it will result in development of tools for assessment or prediction of the exposure of human populations to current and emerging contaminants of concern to the Superfund mission.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
United States
Zip Code
Fritsch, Erika B; Stegeman, John J; Goldstone, Jared V et al. (2015) Expression and function of ryanodine receptor related pathways in PCB tolerant Atlantic killifish (Fundulus heteroclitus) from New Bedford Harbor, MA, USA. Aquat Toxicol 159:156-66
Flannery, Brenna M; Silverman, Jill L; Bruun, Donald A et al. (2015) Behavioral assessment of NIH Swiss mice acutely intoxicated with tetramethylenedisulfotetramine. Neurotoxicol Teratol 47:36-45
Anderson, Donald S; Silva, Rona M; Lee, Danielle et al. (2015) Persistence of silver nanoparticles in the rat lung: Influence of dose, size, and chemical composition. Nanotoxicology 9:591-602
Yang, Jun; Bratt, Jennifer; Franzi, Lisa et al. (2015) Soluble epoxide hydrolase inhibitor attenuates inflammation and airway hyperresponsiveness in mice. Am J Respir Cell Mol Biol 52:46-55
Davidson, R Andrew; Anderson, Donald S; Van Winkle, Laura S et al. (2015) Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy. J Phys Chem A 119:281-9
Van Winkle, Laura S; Bein, Keith; Anderson, Donald et al. (2015) Biological dose response to PM2.5: effect of particle extraction method on platelet and lung responses. Toxicol Sci 143:349-59
Radhakrishnan, Rajeswaran; Suni, Ian I; Bever, Candace S et al. (2014) Impedance Biosensors: Applications to Sustainability and Remaining Technical Challenges. ACS Sustain Chem Eng 2:1649-1655
Das, Gautom Kumar; Bonifacio, Cecile S; De Rojas, Julius et al. (2014) Ultra-long Magnetic Nanochains for Highly Efficient Arsenic Removal from Water. J Mater Chem A Mater Energy Sustain 2:12974-12981
DeGroot, Danica E; Hayashi, Ai; Denison, Michael S (2014) Lack of ligand-selective binding of the aryl hydrocarbon receptor to putative DNA binding sites regulating expression of Bax and paraoxonase 1 genes. Arch Biochem Biophys 541:13-20
Ogunyoku, Temitope A; Young, Thomas M (2014) Removal of triclocarban and triclosan during municipal biosolid production. Water Environ Res 86:197-203

Showing the most recent 10 out of 872 publications