It is the goal of this project Biosensors, to apply new and emerging technologies to implement bioassays that our colleagues at Davis have developed, with improvements in speed and/or sensitivity compared to conventional methods. Several new schemes for detection will be tested, including a nanowell format for trapping and interrogating our non-bleaching nanoparticle labels for DNA and immune assays;a magnetic/luminescent nanoparticle format for DNA assays;and a nanostructured liquid core waveguide for enhancement of fluorescence detection. The targets will include the pyrethroid metabolite 3-PBA, emerging problem compounds such as TCC, TCS and PBDE, and genes for microbes that are used in bioremediation activities. A sensor for TCDD and related compounds will be developed based on AhR technology.

Public Health Relevance

Monitoring the release of toxic compounds from Superfund sites and the exposure of vulnerable populations is crucial to ensuring the health of the environment and humans. Furthermore, it is important to monitor the success of clean-up efforts such as bio-remediation and to assess the potential for toxic compound release during the operation of chemical methods such as thermal remediation. The Biomarker projects at UC Davis have developed a range of techniques for measuring the presence of toxins in air, water and soil samples, and as human metabolites;this project will take the next step in implementing the assays in new formats that can be applied to real-world problems of environmental monitoring.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-28
Application #
8659360
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
28
Fiscal Year
2014
Total Cost
$176,666
Indirect Cost
$61,572
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Patchin, Esther Shin; Anderson, Donald S; Silva, Rona M et al. (2016) Size-Dependent Deposition, Translocation, and Microglial Activation of Inhaled Silver Nanoparticles in the Rodent Nose and Brain. Environ Health Perspect 124:1870-1875
Gee, Shirley J; Kennedy, Ivan R; Lee, N Alice et al. (2016) Immunoanalysis for environmental monitoring and human health. Anal Bioanal Chem 408:5959-61
Bahl, Christopher D; Hvorecny, Kelli L; Morisseau, Christophe et al. (2016) Visualizing the Mechanism of Epoxide Hydrolysis by the Bacterial Virulence Enzyme Cif. Biochemistry 55:788-97
Chapman, Christopher A R; Chen, Hao; Stamou, Marianna et al. (2016) Mechanisms of Reduced Astrocyte Surface Coverage in Cortical Neuron-Glia Co-cultures on Nanoporous Gold Surfaces. Cell Mol Bioeng 9:433-442
Das, Gautom K; Anderson, Donald S; Wallis, Chris D et al. (2016) Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung. Nanoscale 8:11518-30
Ahn, Ki Chang; Ranganathan, Anupama; Bever, Candace S et al. (2016) Detection of the Antimicrobial Triclosan in Environmental Samples by Immunoassay. Environ Sci Technol 50:3754-61
Ronjat, Michel; Feng, Wei; Dardevet, Lucie et al. (2016) In cellulo phosphorylation induces pharmacological reprogramming of maurocalcin, a cell-penetrating venom peptide. Proc Natl Acad Sci U S A 113:E2460-8
Wu, Xianai; Yang, Jun; Morisseau, Christophe et al. (2016) 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) Decreases Hepatic and Systemic Ratios of Epoxide to Diol Metabolites of Unsaturated Fatty Acids in Male Rats. Toxicol Sci 152:309-22
Croes, Kim; Debaillie, Pieterjan; Van den Bril, Bo et al. (2016) Assessment of estrogenic activity in PM₁₀ air samples with the ERE-CALUX bioassay: Method optimization and implementation at an urban location in Flanders (Belgium). Chemosphere 144:392-8
Ren, Qian; Ma, Min; Ishima, Tamaki et al. (2016) Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress. Proc Natl Acad Sci U S A 113:E1944-52

Showing the most recent 10 out of 1043 publications