Driven by technological advances and investigator demand, this Core has evolved from the previous goal of providing DNA microarray, proteomics and metabolomics services all in a single integrated Core to a core specialized on proteome responses. To most efficiently utilize available resources it was decided to contract out DNA microarray services and consolidate the metabolomic services into Core A (Analytical Chemistry Core) while focusing on Proteomic Services in Core B. The Core will develop and provide workflows for proteomics services including profiling of complex protein mixtures (with protein separation and mass spectrometric identification), analysis of posttranslational modification (PTM), including phosphorylation, thiol oxidation, ubiquitination, and activity-based protein profiling of proteases (caspases, etc.). In conjunction with Core A (Metabolomics), the Core will also implement post-MS bioinformatic analyses to enable efficient and comprehensive processing, archival, and utilization of proteomic data sets. Experimental approaches practiced in this core will be based on two-dimensional (2D) separation of complex protein mixtures by 2D gel electrophoresis (2DGE) and 2D liquid chromatography (2DLC). Fractionated mixtures will be analysed by three different mass spectrometry approaches: (i) analysis of trypic in gel digests from 2D gel spots and (ii) analysis of complex peptide mixtures prepared by in-solution trypsin digestion by (iia) offline LC-MALDI MS/MS or (iib) online LC-MS/MS. Proteomic datasets generated by these experimental approaches will be used for protein identification quantitative protein profiling, and PTM analysis. In collaboration with core A, the Core will also provide analytical support for storage and access of proteomics data. Additional integrating themes with other cores will be to find characteristic responses of human and other organisms to given agents, identifying biomarkers of early response, and finding no effect levels for the most sensitive biomarkers of effect. The emphasis will be on increasing efficiency of resource utilization. Thus, highly trained Core personnel will concentrate their efforts on establishing innovative and robust workflows as well as performing technically demanding functions, providing help for planning experiments, and training Project personnel in conducting their own proteomics experiments where feasible.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-28
Application #
8659369
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
28
Fiscal Year
2014
Total Cost
$273,687
Indirect Cost
$95,389
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Zamuruyev, Konstantin O; Borras, Eva; Pettit, Dayna R et al. (2018) Effect of temperature control on the metabolite content in exhaled breath condensate. Anal Chim Acta 1006:49-60
Zamuruyev, Konstantin O; Schmidt, Alexander J; Borras, Eva et al. (2018) Power-efficient self-cleaning hydrophilic condenser surface for portable exhaled breath condensate (EBC) metabolomic sampling. J Breath Res 12:036020
Philippat, Claire; Barkoski, Jacqueline; Tancredi, Daniel J et al. (2018) Prenatal exposure to organophosphate pesticides and risk of autism spectrum disorders and other non-typical development at 3 years in a high-risk cohort. Int J Hyg Environ Health 221:548-555
Burmistrov, Vladimir; Morisseau, Christophe; Pitushkin, Dmitry et al. (2018) Adamantyl thioureas as soluble epoxide hydrolase inhibitors. Bioorg Med Chem Lett 28:2302-2313
Wang, Weicang; Yang, Jun; Zhang, Jianan et al. (2018) Lipidomic profiling reveals soluble epoxide hydrolase as a therapeutic target of obesity-induced colonic inflammation. Proc Natl Acad Sci U S A 115:5283-5288
Tu, Ranran; Armstrong, Jillian; Lee, Kin Sing Stephen et al. (2018) Soluble epoxide hydrolase inhibition decreases reperfusion injury after focal cerebral ischemia. Sci Rep 8:5279
Hill 3rd, Thomas; Rice, Robert H (2018) DUOX expression in human keratinocytes and bronchial epithelial cells: Influence of vanadate. Toxicol In Vitro 46:257-264
Taha, Ameer Y; Hennebelle, Marie; Yang, Jun et al. (2018) Regulation of rat plasma and cerebral cortex oxylipin concentrations with increasing levels of dietary linoleic acid. Prostaglandins Leukot Essent Fatty Acids 138:71-80
Kodani, Sean D; Wan, Debin; Wagner, Karen M et al. (2018) Design and Potency of Dual Soluble Epoxide Hydrolase/Fatty Acid Amide Hydrolase Inhibitors. ACS Omega 3:14076-14086
Ren, Qian; Ma, Min; Yang, Jun et al. (2018) Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson's disease. Proc Natl Acad Sci U S A 115:E5815-E5823

Showing the most recent 10 out of 1149 publications