Driven by technological advances and investigator demand, this Core has evolved from the previous goal of providing DNA microarray, proteomics and metabolomics services all in a single integrated Core to a core specialized on proteome responses. To most efficiently utilize available resources it was decided to contract out DNA microarray services and consolidate the metabolomic services into Core A (Analytical Chemistry Core) while focusing on Proteomic Services in Core B. The Core will develop and provide workflows for proteomics services including profiling of complex protein mixtures (with protein separation and mass spectrometric identification), analysis of posttranslational modification (PTM), including phosphorylation, thiol oxidation, ubiquitination, and activity-based protein profiling of proteases (caspases, etc.). In conjunction with Core A (Metabolomics), the Core will also implement post-MS bioinformatic analyses to enable efficient and comprehensive processing, archival, and utilization of proteomic data sets. Experimental approaches practiced in this core will be based on two-dimensional (2D) separation of complex protein mixtures by 2D gel electrophoresis (2DGE) and 2D liquid chromatography (2DLC). Fractionated mixtures will be analysed by three different mass spectrometry approaches: (i) analysis of trypic in gel digests from 2D gel spots and (ii) analysis of complex peptide mixtures prepared by in-solution trypsin digestion by (iia) offline LC-MALDI MS/MS or (iib) online LC-MS/MS. Proteomic datasets generated by these experimental approaches will be used for protein identification quantitative protein profiling, and PTM analysis. In collaboration with core A, the Core will also provide analytical support for storage and access of proteomics data. Additional integrating themes with other cores will be to find characteristic responses of human and other organisms to given agents, identifying biomarkers of early response, and finding no effect levels for the most sensitive biomarkers of effect. The emphasis will be on increasing efficiency of resource utilization. Thus, highly trained Core personnel will concentrate their efforts on establishing innovative and robust workflows as well as performing technically demanding functions, providing help for planning experiments, and training Project personnel in conducting their own proteomics experiments where feasible.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
United States
Zip Code
Bettaieb, Ahmed; Koike, Shinichiro; Chahed, Samah et al. (2017) Podocyte-specific soluble epoxide hydrolase deficiency in mice attenuates acute kidney injury. FEBS J 284:1970-1986
Frederich, Bert J; Timofeyev, Valeriy; Thai, Phung N et al. (2017) Electrotaxis of cardiac progenitor cells, cardiac fibroblasts, and induced pluripotent stem cell-derived cardiac progenitor cells requires serum and is directed via PI3'K pathways. Heart Rhythm 14:1685-1692
Denison, Michael S; Faber, Samantha C (2017) And Now for Something Completely Different: Diversity in Ligand-Dependent Activation of Ah Receptor Responses. Curr Opin Toxicol 2:124-131
Islam, Oliul; Patil, Prashanth; Goswami, Sumanta K et al. (2017) Inhibitors of soluble epoxide hydrolase minimize ischemia-reperfusion-induced cardiac damage in normal, hypertensive, and diabetic rats. Cardiovasc Ther 35:
Bettaieb, Ahmed; Koike, Shinichiro; Hsu, Ming-Fo et al. (2017) Soluble epoxide hydrolase in podocytes is a significant contributor to renal function under hyperglycemia. Biochim Biophys Acta 1861:2758-2765
Hvorecny, Kelli L; Bahl, Christopher D; Kitamura, Seiya et al. (2017) Active-Site Flexibility and Substrate Specificity in a Bacterial Virulence Factor: Crystallographic Snapshots of an Epoxide Hydrolase. Structure 25:697-707.e4
Fan, Jinzhen; Villarreal, Fernando; Weyers, Brent et al. (2017) Multi-dimensional studies of synthetic genetic promoters enabled by microfluidic impact printing. Lab Chip 17:2198-2207
Zhang, Yue; Hong, Gina; Lee, Kin Sing Stephen et al. (2017) Inhibition of soluble epoxide hydrolase augments astrocyte release of vascular endothelial growth factor and neuronal recovery after oxygen-glucose deprivation. J Neurochem 140:814-825
Vasylieva, Natalia; Barnych, Bogdan; Wan, Debin et al. (2017) Hydroxy-fipronil is a new urinary biomarker of exposure to fipronil. Environ Int 103:91-98
Rand, Amy A; Barnych, Bogdan; Morisseau, Christophe et al. (2017) Cyclooxygenase-derived proangiogenic metabolites of epoxyeicosatrienoic acids. Proc Natl Acad Sci U S A 114:4370-4375

Showing the most recent 10 out of 1104 publications