PROJECT 1 This project will develop and evaluate a comprehensive and integrated suite of analytical, computational, and bioassay based approaches for assessing overall reductions in toxicity resulting from bioremediation of Superfund (SF) sites. These tools will then be applied to optimize biodegradation of two contaminant mixtures, triazine herbicides and polycyclic aromatic hydrocarbons representative of environmental exposures faced by our community partners the Yurok Tribe, through systematic investigation of carbon sources, electron acceptors, and reactor detention times. Although both of these contaminant mixtures are known to biodegrade, transformation products (TPs) accumulate and are widely found in groundwater (triazines) and/or have increased toxicity compared to parent compounds (PAHs). Bioreactor performance will be characterized by measuring shifts in microbial community composition, bioassay activity, and both target and nontarget chemical concentrations measured with GC and LC high resolution mass spectrometry (HRMS). This combination of measurements will provide unique insights into interactions among contaminant transformations, microbial populations and overall reductions in human and ecosystem risks. Novel enzyme engineering approaches will be used to identify rate limiting steps in triazine mineralization and to isolate or design improved enzymes to carry out these steps. Microorganisms with improved ability to degrade triazines will be prepared and tested in the bioreactors to assess ability to remove target compounds and to reduce overall bioactivity compared to standard enrichment approaches. Our central hypothesis is that chemical hazard reduction during SF site remediation can be best characterized through broad consideration of both contaminant destruction and byproduct formation. We further hypothesize that a minimum suite of high- throughput assays can be defined to effectively capture the overall risk reduction during remediation and that this suite of assays can guide optimization of bioreactor design and operation. This project will support a paradigm shift in the SRP away from reducing concentrations of specific constituents and toward the overall reduction of deleterious biological effects. The project is strongly integrated with the overall program, drawing on HRMS, metabolomics, and statistical expertise in the Analytical Core, the full range of bioassays available in the Bioanalytical Core, immunoassays from Project 3 especially for triazines and TPs, as well as integrative bioassays for ER and oxidative stress being developed by Projects 4 and 5. The bioassay suite developed here will be used to analyze environmental samples collected through the Community Engagement Core and the overall workflow will be transferred to a broader user community with the assistance of the Research Translation Core.

Public Health Relevance

PROJECT 1 Bioremediation is often limited for superfund site remediation by slow transformation rates and/or buildup of transformation products, possibly having higher toxicity than the parent compounds. This project will demonstrate significant improvements in bioremediation via a multi-prong effort involving non-target chemical analysis, a comprehensive suite of bioassays and enzyme engineering. It will thus lead to reductions in human exposure to bioactive compounds and to more rapid and effective site cleanups, making it of direct interest to Superfund Research Program stakeholders, especially communities like the Yurok Tribe that face unknown contamination scenarios.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
3P42ES004699-30S1
Application #
9707159
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Henry, Heather F
Project Start
Project End
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
30
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Napimoga, M H; Rocha, E P; Trindade-da-Silva, C A et al. (2018) Soluble epoxide hydrolase inhibitor promotes immunomodulation to inhibit bone resorption. J Periodontal Res 53:743-749
Blöcher, René; Wagner, Karen M; Gopireddy, Raghavender R et al. (2018) Orally Available Soluble Epoxide Hydrolase/Phosphodiesterase 4 Dual Inhibitor Treats Inflammatory Pain. J Med Chem 61:3541-3550
Hao, Lei; Kearns, Jamie; Scott, Sheyenne et al. (2018) Indomethacin Enhances Brown Fat Activity. J Pharmacol Exp Ther 365:467-475
Yang, Yang-Ming; Sun, Dong; Kandhi, Sharath et al. (2018) Estrogen-dependent epigenetic regulation of soluble epoxide hydrolase via DNA methylation. Proc Natl Acad Sci U S A 115:613-618
Zheng, Jing; Chen, Juan; Zou, Xiaohan et al. (2018) Saikosaponin d causes apoptotic death of cultured neocortical neurons by increasing membrane permeability and elevating intracellular Ca2+ concentration. Neurotoxicology 70:112-121
Cui, Xiping; Vasylieva, Natalia; Shen, Ding et al. (2018) Biotinylated single-chain variable fragment-based enzyme-linked immunosorbent assay for glycocholic acid. Analyst 143:2057-2065
Harris, Todd R; Kodani, Sean; Rand, Amy A et al. (2018) Celecoxib Does Not Protect against Fibrosis and Inflammation in a Carbon Tetrachloride-Induced Model of Liver Injury. Mol Pharmacol 94:834-841
Bever, Candace S; Rand, Amy A; Nording, Malin et al. (2018) Effects of triclosan in breast milk on the infant fecal microbiome. Chemosphere 203:467-473
Zheng, Jing; McKinnie, Shaun M K; El Gamal, Abrahim et al. (2018) Organohalogens Naturally Biosynthesized in Marine Environments and Produced as Disinfection Byproducts Alter Sarco/Endoplasmic Reticulum Ca2+ Dynamics. Environ Sci Technol 52:5469-5478
Lakkappa, Navya; Krishnamurthy, Praveen T; Yamjala, Karthik et al. (2018) Evaluation of antiparkinson activity of PTUPB by measuring dopamine and its metabolites in Drosophila melanogaster: LC-MS/MS method development. J Pharm Biomed Anal 149:457-464

Showing the most recent 10 out of 1149 publications