The overall theme of the Berkeley Superfund Research Program (SRP) is using state-of-the-art technology, including 'omics'and nanotechnology, to (1) develop biological markers and apply them in human population studies, especially those involving susceptible populations such as children and pregnant women;(2) to improve chemical detection;and, (3) facilitate and lower the cost of waste site remediation. The proposed program builds on the strengths of UC Berkeley and Lawrence Berkeley National Laboratory in engineering, chemistry, and molecular epidemiology. The highly integrated program consists of six interrelated projects (three with a biomedical research focus and three with a non-biomedical research focus) and four cores. Our research team will focus on environmental exposures currently encountered at hazardous waste sites and several contaminants of emerging human health concern. All SRP mandates will be addressed. Projects 1, 2, 3 and 6 specifically aim to develop advanced techniques for the detection, assessment, and evaluation of the effect of hazardous substances on human health and improve methods to assess the risks to human health presented by benzene, arsenic, trichloroethylene and other hazardous substances. Project 5 will use nanotechnology to develop methods to detect hazardous substances in the environment in a simple, inexpensive fashion. Projects 4 and 6 will develop biological, chemical, and physical methods to remediate waste sites and reduce the amount and toxicity of hazardous substances. A Genomics and Analytical Chemistry core (C) and a Quantitative Biology core (D) will assist project researchers in meeting their goals. A Research Translation core (B) will facilitate intensive discussions between investigators and government audiences, and generate new initiatives to increase understanding of the significance and applicability of research to public health protection. The overall goal is to enhance understanding of the relationship between exposure and disease;provide usable tools to improve human health risk assessments;and, develop a range of prevention and remediation strategies to improve and protect public health and the environment. The program will be overseen and coordinated by an Administration core (A).

Public Health Relevance

A highly integrated research and translation program is proposed with the goal of enhancing our understanding ofthe relationship between environmental exposures and disease, providing usable tools to improve human health risk assessments and developing prevention and remediation strategies to improve and protect public health and the environment. State-of-the art technologies will be developed and applied to meet these goals.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
3P42ES004705-27S1
Application #
8889472
Study Section
Special Emphasis Panel (ZES1-SET-V (04))
Program Officer
Heacock, Michelle
Project Start
1997-04-01
Project End
2016-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
27
Fiscal Year
2014
Total Cost
$49,500
Indirect Cost
Name
University of California Berkeley
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Barazesh, James M; Prasse, Carsten; Wenk, Jannis et al. (2018) Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis. Environ Sci Technol 52:195-204
Counihan, Jessica L; Wiggenhorn, Amanda L; Anderson, Kimberly E et al. (2018) Chemoproteomics-Enabled Covalent Ligand Screening Reveals ALDH3A1 as a Lung Cancer Therapy Target. ACS Chem Biol 13:1970-1977
Lavy, Adi; Keren, Ray; Yu, Ke et al. (2018) A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges. Environ Microbiol 20:800-814
Perttula, Kelsi; Schiffman, Courtney; Edmands, William M B et al. (2018) Untargeted lipidomic features associated with colorectal cancer in a prospective cohort. BMC Cancer 18:996
Edmands, William M B; Hayes, Josie; Rappaport, Stephen M (2018) SimExTargId: a comprehensive package for real-time LC-MS data acquisition and analysis. Bioinformatics 34:3589-3590
McHale, Cliona M; Osborne, Gwendolyn; Morello-Frosch, Rachel et al. (2018) Assessing health risks from multiple environmental stressors: Moving from G×E to I×E. Mutat Res 775:11-20
Bruton, Thomas A; Sedlak, David L (2018) Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. Chemosphere 206:457-464
Schiffman, Courtney; McHale, Cliona M; Hubbard, Alan E et al. (2018) Identification of gene expression predictors of occupational benzene exposure. PLoS One 13:e0205427
Wiemels, Joseph L; Walsh, Kyle M; de Smith, Adam J et al. (2018) GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nat Commun 9:286
Prasse, Carsten; Ford, Breanna; Nomura, Daniel K et al. (2018) Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. Proc Natl Acad Sci U S A 115:2311-2316

Showing the most recent 10 out of 629 publications