Due to their exceptionally low water solubilities polychlorinated dibenzodioxins and furans (PCDD/Fs) are strongly and extensively bound to soil and sediment particles. Sorbed PCDD/Fs are distributed among the primary component geosorbents, namely char-like carbonaceous materials, amorphous organic matter, and clays, and the fractional distribution among these geosorbents is hypothesized to change with the total PCDD/F load. Since PCDD/Fs are also highly resistant to decomposition, sorption is a primary determinant of their environmental fates and impacts. Importantly, sorption to soil/sediment particles may modify the bioavailabilities and toxicities of PCDD/Fs in unknown ways, and bioavailability is expected to be geosorbent-specific. The major goals are: (1) to advance fundamental understanding of PCDD/F sorption by these dominant geosorbents comprising soils/sediments, especially at very low environmentally relevant (pptppb) concentrations where carbonaceous materials (e.g. chars) are hypothesized to control soil-water distribution, (2) to determine the differential bioaccessibilities/bioavailabilities of PCDD/Fs sorbed to each key geosorbent type using physiologically based extraction fluid, and mammalian models, (3) to test the hypothesis that mechanistic knowledge of sorption/desorption reactions for PCDD/Fs with individual component geosorbents can be extrapolated to predict site-specific bioaccessibilites and bioavailabilities for contaminated whole soils/sediments, and (4) to evaluate the clay-facilitated formation of PCDD/Fs, and corresponding predioxins/furans, from precursor chlorophenols, and elucidate the underlying mechanistic basis for these reactions. Estimates of PCDD/F bioavailability in soils/sediments are few and inconsistent, hence most risk assessment models for exposure to environmental PCDD/Fs make generic assumptions of 100% bioavailability, irrespective of soil/sediment characteristics. The results of the proposed research will provide the basis for (1) a more mechanistic understanding of the relationship between soil/sediment composition and the human and ecological risks posed by a given total PCDD/F load in soil/sediment, and (2) understanding the prevalence of clay-facilitated PCDD/F formation as an on-going in-situ process leading to unexpected PCDD/F accumulations that threaten human health. Further, it would be of great economic and environmental benefit if certain chars, such as those produced as intentional by-products of biofuels/Csequestration technologies, were shown to be effective as soil/sediment amendments to diminish bioavailability of PCDD/Fs.

Public Health Relevance

Current risk assessment models typically assume 100% bioavailability of PCDD/Fs in soils. The ability to assign scientifically informed values for PCDD/F bioavailability, that account for soil composition, represents a major advance in understanding the exposure risk of PCDD/F contaminated soils/sediments. Formulating safe and realistic remediation endpoints based on available contaminant concentrations instead of total ones allows limited remediation funds to be better prioritized and needless remediation attempts avoided.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004911-23
Application #
8695356
Study Section
Special Emphasis Panel (ZES1-LWJ-D)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
23
Fiscal Year
2014
Total Cost
$325,387
Indirect Cost
$89,761
Name
Michigan State University
Department
Type
DUNS #
193247145
City
East Lansing
State
MI
Country
United States
Zip Code
48824
Hwang, Hye Jin; Dornbos, Peter; Steidemann, Michelle et al. (2016) Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol Appl Pharmacol 304:121-32
Hwang, Hye Jin; Dornbos, Peter; LaPres, John J (2016) Data on AHR-dependent changes in the mitochondrial proteome in response to ,3,7,8-tetrachlorodibenzo-p-dioxin. Data Brief 8:191-5
Stedtfeld, Robert D; Williams, Maggie R; Fakher, Umama et al. (2016) Antimicrobial resistance dashboard application for mapping environmental occurrence and resistant pathogens. FEMS Microbiol Ecol 92:
Kovalova, Natalia; Manzan, Maria; Crawford, Robert et al. (2016) Role of aryl hydrocarbon receptor polymorphisms on TCDD-mediated CYP1B1 induction and IgM suppression by human B cells. Toxicol Appl Pharmacol 309:15-23
Tian, Haoting; Gao, Juan; Li, Hui et al. (2016) Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-acetic-acid in Organomodified Montmorillonite. Sci Rep 6:32949
Phadnis-Moghe, Ashwini S; Li, Jinpeng; Crawford, Robert B et al. (2016) SHP-1 is directly activated by the aryl hydrocarbon receptor and regulates BCL-6 in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Appl Pharmacol 310:41-50
Nault, Rance; Fader, Kelly A; Kirby, Mathew P et al. (2016) Pyruvate Kinase Isoform Switching and Hepatic Metabolic Reprogramming by the Environmental Contaminant 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. Toxicol Sci 149:358-71
Wang, Qiong; Fish, Jordan A; Gilman, Mariah et al. (2015) Xander: employing a novel method for efficient gene-targeted metagenomic assembly. Microbiome 3:32
Nault, Rance; Colbry, Dirk; Brandenberger, Christina et al. (2015) Development of a computational high-throughput tool for the quantitative examination of dose-dependent histological features. Toxicol Pathol 43:366-75
Liu, Cun; Gu, Cheng; Yu, Kai et al. (2015) Integrating structural and thermodynamic mechanisms for sorption of PCBs by montmorillonite. Environ Sci Technol 49:2796-805

Showing the most recent 10 out of 374 publications