The proposed study is based on the knowledge that many sites contaminated with xenobiotic/recalcitrant organic compounds are also contaminated with heavy metals. The hypothesis to be tested by this project is that the combined effect of toxic concentrations of metals and organics in soil can result in decreased bacterial biomass and activity, and inhibit bioremediation of that soil by indigenous organisms. The approach to be utilized herein is to utilize bacterial biomass and specific indicator bacteria (or a specific metabolic activity) as bioassays to assess the impact of toxic waste loads on soil viability. The influence of heavy metals on the metabolic and genetic potential of bacteria to degrade halohydrocarbons in soil will be addressed.
The specific aims for the proposed project period are: 1) To determine accurate values of total biomass, as well as selected indicator organisms and metabolic activities in metal/organic contaminated soils. 2) To measure the ability of contaminated soils in (1) to degrade an added organic compound which is normally biodegradable in soil. 3) To correlate the bioremediation potential of soils in (2) with the bacterial bioassay developed in (1). 4) To evaluate the influence of the heavy metals on the ability of specific bacteria to degrade organics in metal contaminated soils. 5) To use the biomarker assays developed in this project to document changes in the soil microflora following additions of contaminants to soil in field scale lysimeters. Bacterial biomass will be determined by direct extraction of DNA from soil samples followed by polymerase chain reaction (PCR) amplification of 16S ribosomal RNA encoding sequences. The amount of amplified DNA will be determined by HPLC analysis. PCR amplification will also be carried out utilizing primer pairs specific for particular bacterial genera or specific degradative pathway genes to determine if specific bacteria or catabolic capabilities are present in the soil. Arbitrary primed PCR will be used to generate fingerprints of soil communities to assess the diversity of the bacterial population present. Metabolic fingerprints of the bacterial communities will be obtained using Biology GN microplates. The test compound in the degradation studies will be 2,4-D, which will be added to microcosms of contaminated and noncontaminated soils at a rete of 1000 ppm. Degradation will be measured utilizing HPLC. 2,4-D degradation will then be measured in soil when added in combination with mercury. Alcaligenes eutrophus JMP134, which carries a plasmid specifying mercury resistance and 2,4-D degradation, will be utilized as a test organism. The effects of mercury and 2,4-D on the soil degrader population will be determined by a culture method as well as by PCR analysis utilizing primers specific for the tfdB gene. The procedures developed will ultimately be applied to an analysis of bacterial populations in a field scale lysimeter.

Project Start
1999-04-01
Project End
2000-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
10
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Pu, Mengjie; Guan, Zeyu; Ma, Yongwen et al. (2018) Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl Catal A Gen 549:82-92
Brusseau, Mark L; Guo, Zhilin (2018) The integrated contaminant elution and tracer test toolkit, ICET3, for improved characterization of mass transfer, attenuation, and mass removal. J Contam Hydrol 208:17-26
Valentín-Vargas, Alexis; Neilson, Julia W; Root, Robert A et al. (2018) Treatment impacts on temporal microbial community dynamics during phytostabilization of acid-generating mine tailings in semiarid regions. Sci Total Environ 618:357-368
Brusseau, Mark L (2018) Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. Sci Total Environ 613-614:176-185
Delikhoon, Mahdieh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran. Environ Pollut 242:938-951
Hammond, Corin M; Root, Robert A; Maier, Raina M et al. (2018) Mechanisms of Arsenic Sequestration by Prosopis juliflora during the Phytostabilization of Metalliferous Mine Tailings. Environ Sci Technol 52:1156-1164
Yan, Ni; Zhong, Hua; Brusseau, Mark L (2018) The natural activation ability of subsurface media to promote in-situ chemical oxidation of 1,4-dioxane. Water Res 149:386-393
Madeira, Camila L; Field, Jim A; Simonich, Michael T et al. (2018) Ecotoxicity of the insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) and its reduced metabolite 3-amino-1,2,4-triazol-5-one (ATO). J Hazard Mater 343:340-346
Liu, Pengfei; Rojo de la Vega, Montserrat; Sammani, Saad et al. (2018) RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc Natl Acad Sci U S A 115:E10352-E10361
Thomas, Andrew N; Root, Robert A; Lantz, R Clark et al. (2018) Oxidative weathering decreases bioaccessibility of toxic metal(loid)s in PM10 emissions from sulfide mine tailings. Geohealth 2:118-138

Showing the most recent 10 out of 497 publications