The human bladder is the most sensitive internal organ to arsenic-induced carcinogenesis. The bladder is exposed to inorganic arsenicals and methylated metabolites both systemically and via the urine. Methylated metabolites of arsenic have been found to be more cytotoxic than inorganic arsenicals. The UROtsa cell, an immortalized human urothelium cell, has become an accepted system for examining the toxic effects of arsenicals to the bladder. Year-long chronic low-level exposure of arsenite [1 microM As(III)] or the more toxic arsenic metabolite [monomethyl-arsonous acid;50 nM MMA(III)] transformed UROtsa cells such that they formed tumors when injected into immuno-deficient mice. Current studies indicate that much shorter exposures (3 months) to low-level MMA(III) is sufficient to allow them to grown in soft agar and form tumors in immuno-deficient mice. These results indicate that MMA (III) causes critical, irreversible events in UROtsa cells in the first 3 months of exposure. Thus the Goal of this proposal is to find the critical events that short-term, low-level As(III) or MMA(III) causes in UROtsa cells resulting in their eventual transition into malignantly transformed cells. To accomplish this goal we will do low-level, short-term (0-3) exposures of UROtsa cells to arsenicals [1 microM As(III) and 50 nM MMA(III)] to determine the minimal exposure and time required to malignantly transform these cells. Once this minimal exposure time point is established we will examine the cells for changes in specific alterations in macromolecules, signaling systems, or regulatory systems resulting in the irreversible changes. Since previous studies have found reactive oxygen species (ROS) generation by low-level exposure to As(III) and MMA(III), we will determine if these early effects of arsenicals on UROtsa cells are mediated by ROS generation. To determine if low-level arsenicals can transform "normal" human bladder cells, primary cultures of human bladder cells will be similarly examined. Lastly pivotal events in the transformation of bladder cells by low-level arsenicals will be examined as possible biomarkers in exposed populations. Overall, these studies will clarify the toxic effects of low-level arsenic in a human bladder model and provide potential biomarkers for arsenic-induced bladder injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-23
Application #
8378302
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
23
Fiscal Year
2012
Total Cost
$188,507
Indirect Cost
$74,112
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Youn, Jong-Sang; Csavina, Janae; Rine, Kyle P et al. (2016) Hygroscopic Properties and Respiratory System Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations. Environ Sci Technol 50:11706-11713
Olivares, Christopher I; Sierra-Alvarez, Reyes; Abrell, Leif et al. (2016) Zebrafish embryo toxicity of anaerobic biotransformation products from the insensitive munitions compound 2,4-dinitroanisole. Environ Toxicol Chem 35:2774-2781
Rehman, Zahir Ur; Khan, Sardar; Qin, Kun et al. (2016) Quantification of inorganic arsenic exposure and cancer risk via consumption of vegetables in southern selected districts of Pakistan. Sci Total Environ 550:321-9
Zhong, Hua; Liu, Guansheng; Jiang, Yongbing et al. (2016) Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces. Colloids Surf B Biointerfaces 139:244-8
Rodriguez-Freire, Lucia; Moore, Sarah E; Sierra-Alvarez, Reyes et al. (2016) Arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor. Biotechnol Bioeng 113:522-30
Beamer, Paloma I; Klimecki, Walter T; Loh, Miranda et al. (2016) Association of Children's Urinary CC16 Levels with Arsenic Concentrations in Multiple Environmental Media. Int J Environ Res Public Health 13:
Honeker, Linnea K; Root, Robert A; Chorover, Jon et al. (2016) Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF). J Microbiol Methods 131:23-33
Ezeh, Peace C; Xu, Huan; Lauer, Fredine T et al. (2016) Monomethylarsonous acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells. Toxicol Sci 149:289-99
Gil-Loaiza, Juliana; White, Scott A; Root, Robert A et al. (2016) Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field. Sci Total Environ 565:451-61
Olivares, Christopher I; Wang, Junqin; Luna, Carlos D Silva et al. (2016) Continuous treatment of the insensitive munitions compound N-methyl-p-nitro aniline (MNA) in an upflow anaerobic sludge blanket (UASB) bioreactor. Chemosphere 144:1116-22

Showing the most recent 10 out of 425 publications