Chlorinated organic solvent compounds such as tetrachloroethene, trichloroethene, and vinyl chloride are among the most common groundwater contaminants in the USA due to their prior widespread use for numerous industrial and commercial applications. Given their toxicity, widespread occurrence, and complex behavior, chlorinated solvents clearly pose a significant risk to human health and the environment. This proposed project is designed to address and help resolve issues that are critical to the management and closure of chlorinated-solvent contaminated sites. The overall goal of the proposed research is to enhance the accuracy of risk assessments and improve the effectiveness of remediation strategies for sites contaminated by chlorinated solvents. The overarching principle guiding the proposed research is that improving our mechanistic-based, multiple-scale understanding of the distribution, mass-transfer, and mass-flux behavior of chlorinated solvents in heterogeneous systems will enhance risk assessment, site characterization, and remediation efforts. The project is designed to address issues relevant to chlorinated-solvent contaminated sites across the USA, as well as those of particular relevance to sites in the Southwest.
The specific aims to be addressed in this project are: (1) Improve our mechanistic understanding of the interfacial and mass-transfer behavior of immiscible liquids in multiphase systems, (2) Investigate the influence of heterogeneity, source-zone aging, and poorly-accessible NAPL on long-term mass-flux dynamics for aqueous and vapor-phase systems, (3) Determine the mass removal, mass flux, and plume contraction behavior of chlorinated solvents at the field scale, (4) Test the efficacy of an innovative method for in-situ characterization of mass transfer and mass flux, and compare the performance of this and several existing methods, (5) Integrate process information across spatial and temporal scales to improve conceptual and mathematical models. The project is designed to accomplish a systematic study of the mass-transfer behavior of chlorinated-solvent immiscible liquids at multiple scales, and to investigate the impact of system properties on mass flux and plume response. The project involves integrated pore-scale, intermediate-scale, and field-scale investigations, as well as mathematical modeling analysis.

Public Health Relevance

This project is focused on addressing the key issues or grand challenges for risk assessment, remediation, and ultimate closure of sites contaminated by chlorinated solvents. The results of the project will improve risk assessments and enhance the design and implementation of remediation efforts for chlorinated-solvent contaminated sites. Ultimately, the project will deliver products that will improve the long-term management of sites contaminated by chlorinated solvents, and help transition them towards closure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-23
Application #
8378311
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
23
Fiscal Year
2012
Total Cost
$178,482
Indirect Cost
$69,000
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Mora, Marco; Braun, Rachel A; Shingler, Taylor et al. (2017) Analysis of remotely sensed and surface data of aerosols and meteorology for the Mexico Megalopolis Area between 2003 and 2015. J Geophys Res Atmos 122:8705-8723
Guo, Zhilin; Brusseau, Mark L (2017) The impact of well-field configuration and permeability heterogeneity on contaminant mass removal and plume persistence. J Hazard Mater 333:109-115
Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang et al. (2017) Application of ascorbic acid to enhance trichloroethene degradation by Fe(III)-activated calcium peroxide. Chem Eng J 325:188-198
Danish, Muhammad; Gu, Xiaogang; Lu, Shuguang et al. (2017) An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite. Appl Catal A Gen 531:177-186
Ramos-Ruiz, Adriana; Sesma-Martin, Juan; Sierra-Alvarez, Reyes et al. (2017) Continuous reduction of tellurite to recoverable tellurium nanoparticles using an upflow anaerobic sludge bed (UASB) reactor. Water Res 108:189-196
Madeira, Camila L; Speet, Samuel A; Nieto, Cristina A et al. (2017) Sequential anaerobic-aerobic biodegradation of emerging insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO). Chemosphere 167:478-484
Honeker, Linnea K; Neilson, Julia W; Root, Robert A et al. (2017) Bacterial Rhizoplane Colonization Patterns of Buchloe dactyloides Growing in Metalliferous Mine Tailings Reflect Plant Status and Biogeochemical Conditions. Microb Ecol 74:853-867
Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang et al. (2017) Benzene oxidation by Fe(III)-catalyzed sodium percarbonate: matrix constituent effects and degradation pathways. Chem Eng J 309:22-29
Olivares, Christopher I; Madeira, Camila L; Sierra-Alvarez, Reyes et al. (2017) Environmental Fate of 14C Radiolabeled 2,4-Dinitroanisole in Soil Microcosms. Environ Sci Technol 51:13327-13334
Soltani, Naghmeh; Keshavarzi, Behnam; Sorooshian, Armin et al. (2017) Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). Environ Geochem Health :

Showing the most recent 10 out of 460 publications