Atmospheric dust originating from mine tailings and other mining operations is a potentially important human exposure route for arsenic, lead and other toxic elements in the arid Southwest, and will become increasingly important here and elsewhere with predicted regional climate change and population growth. Dust particles emitted from mining operations mobilize trace metals which can then accumulate in soils, natural waters, and vegetation. Human exposure to the dust can occur through inhalation and, especially in the case of children, incidental dust ingestion. This project will use Micro-Orifice Uniform Deposit Impactor samplers to collect atmospheric aerosols in ten size fractions (0.056 microM to 18 microM aerodynamic diameter), downwind of two Superfund sites - contaminated mine tailings at Hayden-Winkleman and Iron King, AZ. The separate fractions will yield size-fractionated mass concentration data for toxic metals and metalloids (As, Pb, Cr, Cd, Sb), as well as other physicochemical characteristics. A scanning mobility particle sizer (SMPS) will allow us to count the number of ultrafine particles, which are thought to be most closely linked to adverse health effects. Using these tools, the following Aims will be addressed: 1) assess the role of atmospheric dust in the transport of metals contaminants from mine operations 2) identify contaminant source to assess remediation approaches 3) in collaboration with Project 9 assess role of vegetation cover to reduce dust emission 4) incorporate results into University of Arizona - Dust Regional Atmosphere Model for prediction of dust emissions and human exposures These studies will be performed in collaboration with Region 9 EPA and the State of Arizona Department of Environmental Quality. The results of these studies will be critical additions to the information that these agencies utilize for risk assessment of down-wind exposed populations.

Public Health Relevance

Greatly improved characterization of the aerosols originating from past and ongoing mining operations is of high priority and of direct relevance to the risk assessment at these sites by Region 9 EPA and the State of Arizona Department of Environmental Quality. Models from these studies can become predicitive tools for potential exposure during different climatic events.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-23
Application #
8378314
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
23
Fiscal Year
2012
Total Cost
$244,585
Indirect Cost
$94,555
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Mora, Marco; Braun, Rachel A; Shingler, Taylor et al. (2017) Analysis of remotely sensed and surface data of aerosols and meteorology for the Mexico Megalopolis Area between 2003 and 2015. J Geophys Res Atmos 122:8705-8723
Guo, Zhilin; Brusseau, Mark L (2017) The impact of well-field configuration and permeability heterogeneity on contaminant mass removal and plume persistence. J Hazard Mater 333:109-115
Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang et al. (2017) Application of ascorbic acid to enhance trichloroethene degradation by Fe(III)-activated calcium peroxide. Chem Eng J 325:188-198
Danish, Muhammad; Gu, Xiaogang; Lu, Shuguang et al. (2017) An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite. Appl Catal A Gen 531:177-186
Ramos-Ruiz, Adriana; Sesma-Martin, Juan; Sierra-Alvarez, Reyes et al. (2017) Continuous reduction of tellurite to recoverable tellurium nanoparticles using an upflow anaerobic sludge bed (UASB) reactor. Water Res 108:189-196
Madeira, Camila L; Speet, Samuel A; Nieto, Cristina A et al. (2017) Sequential anaerobic-aerobic biodegradation of emerging insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO). Chemosphere 167:478-484
Honeker, Linnea K; Neilson, Julia W; Root, Robert A et al. (2017) Bacterial Rhizoplane Colonization Patterns of Buchloe dactyloides Growing in Metalliferous Mine Tailings Reflect Plant Status and Biogeochemical Conditions. Microb Ecol 74:853-867
Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang et al. (2017) Benzene oxidation by Fe(III)-catalyzed sodium percarbonate: matrix constituent effects and degradation pathways. Chem Eng J 309:22-29
Olivares, Christopher I; Madeira, Camila L; Sierra-Alvarez, Reyes et al. (2017) Environmental Fate of 14C Radiolabeled 2,4-Dinitroanisole in Soil Microcosms. Environ Sci Technol 51:13327-13334
Soltani, Naghmeh; Keshavarzi, Behnam; Sorooshian, Armin et al. (2017) Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). Environ Geochem Health :

Showing the most recent 10 out of 460 publications