Chlorinated organic solvent compounds such as tetrachloroethene, trichloroethene, and vinyl chloride are among the most common groundwater contaminants in the USA due to their prior widespread use for numerous industrial and commercial applications. Given their toxicity, widespread occurrence, and complex behavior, chlorinated solvents clearly pose a significant risk to human health and the environment. This proposed project is designed to address and help resolve issues that are critical to the management and closure of chlorinated-solvent contaminated sites. The overall goal of the proposed research is to enhance the accuracy of risk assessments and improve the effectiveness of remediation strategies for sites contaminated by chlorinated solvents. The overarching principle guiding the proposed research is that improving our mechanistic-based, multiple-scale understanding of the distribution, mass-transfer, and mass-flux behavior of chlorinated solvents in heterogeneous systems will enhance risk assessment, site characterization, and remediation efforts. The project is designed to address issues relevant to chlorinated-solvent contaminated sites across the USA, as well as those of particular relevance to sites in the Southwest.
The specific aims to be addressed in this project are: (1) Improve our mechanistic understanding of the interfacial and mass-transfer behavior of immiscible liquids in multiphase systems, (2) Investigate the influence of heterogeneity, source-zone aging, and poorly-accessible NAPL on long-term mass-flux dynamics for aqueous and vapor-phase systems, (3) Determine the mass removal, mass flux, and plume contraction behavior of chlorinated solvents at the field scale, (4) Test the efficacy of an innovative method for in-situ characterization of mass transfer and mass flux, and compare the performance of this and several existing methods, (5) Integrate process information across spatial and temporal scales to improve conceptual and mathematical models. The project is designed to accomplish a systematic study of the mass-transfer behavior of chlorinated-solvent immiscible liquids at multiple scales, and to investigate the impact of system properties on mass flux and plume response. The project involves integrated pore-scale, intermediate-scale, and field-scale investigations, as well as mathematical modeling analysis.

Public Health Relevance

This project is focused on addressing the key issues or grand challenges for risk assessment, remediation, and ultimate closure of sites contaminated by chlorinated solvents. The results of the project will improve risk assessments and enhance the design and implementation of remediation efforts for chlorinated-solvent contaminated sites. Ultimately, the project will deliver products that will improve the long-term management of sites contaminated by chlorinated solvents, and help transition them towards closure.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Arizona
United States
Zip Code
Gonzales, Patricia; Felix, Omar; Alexander, Caitlin et al. (2014) Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits. J Hazard Mater 280:619-26
Severson, Paul L; Vrba, Lukas; Stampfer, Martha R et al. (2014) Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen 775-776:48-54
Boitano, Scott; Hoffman, Justin; Tillu, Dipti V et al. (2014) Development and evaluation of small peptidomimetic ligands to protease-activated receptor-2 (PAR2) through the use of lipid tethering. PLoS One 9:e99140
Sollome, James J; Thavathiru, Elangovan; Camenisch, Todd D et al. (2014) HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal 26:70-82
Medeiros, Matthew; Le, Tam Minh; Troup, Daniel et al. (2014) Expression Of Selected Pathway-Marker Genes In Human Urothelial Cells Exposed Chronically To A Non-Cytotoxic Concentration Of Monomethylarsonous Acid. Toxicol Rep 1:421-434
Crosbie, Ewan; Sorooshian, Armin; Monfared, Negar Abolhassani et al. (2014) A Multi-Year Aerosol Characterization for the Greater Tehran Area Using Satellite, Surface, and Modeling Data. Atmosphere (Basel) 5:178-197
Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C et al. (2014) The impact of biostimulation on the fate of sulfate and associated sulfur dynamics in groundwater. J Contam Hydrol 164:240-50
Ramirez-Andreotta, Monica D; Brusseau, Mark L; Artiola, Janick F et al. (2014) Environmental Research Translation: enhancing interactions with communities at contaminated sites. Sci Total Environ 497-498:651-64
Csavina, Janae; Field, Jason; Félix, Omar et al. (2014) Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Sci Total Environ 487:82-90
Beamer, P I; Sugeng, A J; Kelly, M D et al. (2014) Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings. Environ Sci Process Impacts 16:1275-81

Showing the most recent 10 out of 312 publications