The human bladder is the most sensitive internal organ to arsenic-induced carcinogenesis. The bladder is exposed to inorganic arsenicals and methylated metabolites both systemically and via the urine. Methylated metabolites of arsenic have been found to be more cytotoxic than inorganic arsenicals. The UROtsa cell, an immortalized human urothelium cell, has become an accepted system for examining the toxic effects of arsenicals to the bladder. Year-long chronic low-level exposure of arsenite [1 microM As(III)] or the more toxic arsenic metabolite [monomethyl-arsonous acid;50 nM MMA(III)] transformed UROtsa cells such that they formed tumors when injected into immuno-deficient mice. Current studies indicate that much shorter exposures (3 months) to low-level MMA(III) is sufficient to allow them to grown in soft agar and form tumors in immuno-deficient mice. These results indicate that MMA (III) causes critical, irreversible events in UROtsa cells in the first 3 months of exposure. Thus the Goal of this proposal is to find the critical events that short-term, low-level As(III) or MMA(III) causes in UROtsa cells resulting in their eventual transition into malignantly transformed cells. To accomplish this goal we will do low-level, short-term (0-3) exposures of UROtsa cells to arsenicals [1 microM As(III) and 50 nM MMA(III)] to determine the minimal exposure and time required to malignantly transform these cells. Once this minimal exposure time point is established we will examine the cells for changes in specific alterations in macromolecules, signaling systems, or regulatory systems resulting in the irreversible changes. Since previous studies have found reactive oxygen species (ROS) generation by low-level exposure to As(III) and MMA(III), we will determine if these early effects of arsenicals on UROtsa cells are mediated by ROS generation. To determine if low-level arsenicals can transform """"""""normal"""""""" human bladder cells, primary cultures of human bladder cells will be similarly examined. Lastly pivotal events in the transformation of bladder cells by low-level arsenicals will be examined as possible biomarkers in exposed populations. Overall, these studies will clarify the toxic effects of low-level arsenic in a human bladder model and provide potential biomarkers for arsenic-induced bladder injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-25
Application #
8659385
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
2014-04-01
Project End
2015-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
25
Fiscal Year
2014
Total Cost
$185,925
Indirect Cost
$63,202
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Pu, Mengjie; Guan, Zeyu; Ma, Yongwen et al. (2018) Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl Catal A Gen 549:82-92
Brusseau, Mark L; Guo, Zhilin (2018) The integrated contaminant elution and tracer test toolkit, ICET3, for improved characterization of mass transfer, attenuation, and mass removal. J Contam Hydrol 208:17-26
Valentín-Vargas, Alexis; Neilson, Julia W; Root, Robert A et al. (2018) Treatment impacts on temporal microbial community dynamics during phytostabilization of acid-generating mine tailings in semiarid regions. Sci Total Environ 618:357-368
Brusseau, Mark L (2018) Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. Sci Total Environ 613-614:176-185
Delikhoon, Mahdieh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran. Environ Pollut 242:938-951
Hammond, Corin M; Root, Robert A; Maier, Raina M et al. (2018) Mechanisms of Arsenic Sequestration by Prosopis juliflora during the Phytostabilization of Metalliferous Mine Tailings. Environ Sci Technol 52:1156-1164
Yan, Ni; Zhong, Hua; Brusseau, Mark L (2018) The natural activation ability of subsurface media to promote in-situ chemical oxidation of 1,4-dioxane. Water Res 149:386-393
Madeira, Camila L; Field, Jim A; Simonich, Michael T et al. (2018) Ecotoxicity of the insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) and its reduced metabolite 3-amino-1,2,4-triazol-5-one (ATO). J Hazard Mater 343:340-346
Liu, Pengfei; Rojo de la Vega, Montserrat; Sammani, Saad et al. (2018) RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc Natl Acad Sci U S A 115:E10352-E10361
Thomas, Andrew N; Root, Robert A; Lantz, R Clark et al. (2018) Oxidative weathering decreases bioaccessibility of toxic metal(loid)s in PM10 emissions from sulfide mine tailings. Geohealth 2:118-138

Showing the most recent 10 out of 497 publications