Mine tailings disposal sites are prevalent in arid and semiarid regions throughout the world including the US Southwest. Unreclaimed mining wastes generally remain unvegetated for tens to hundreds of years, and exposed tailings can spread over vast areas via wind and water erosion. A combination of factors, including metal toxicity, low organic matter, acidic pH, high salinity, extreme temperatures, low precipitation, and severely stressed microbial communities contribute to this lack of vegetation. For such tailings, wind-borne dispersion is an important exposure route for nearby communities and environmentally sensitive areas. Specifically, tailings are a significant source of air pollution in the form of particulates <10 ?mu?m (PM10) and <2.5 ?mu?m (PM2.5). Exposure to these particulates has consequences for respiratory and other diseases even in the absence of toxic metals. The fact that many sites additionally contain toxic metals exacerbates the human health impact. A cost effective remedial technology for such sites is phytostabilization, the establishment of a permanent vegetative cover that does not accumulate metals into plant shoot tissues. While of great promise, there is currently little documentation of this technology in accessible scientific literature. The overall goal of this project is to determine how plant-microbe-metal interactions affect the short- and long-term requirements for, and mechanisms of, revegetation of arid mine tailings and to identify the biological and physico-chemical markers that indicate successful remediation. This project focuses on examining field application of phytostabilization while retaining several key basic research questions identified as important for success in the field. Specific objectives include: (1) to translate phytostabilization technology from the greenhouse to the field;(2) to determine if a multi-variate, spatial analysis of initial biophysico-chemical characteristics of mine tailings can serve as a useful predictor of phytostabilization success;(3) to evaluate the progress toward development of a "healthy" soil as a function of time following revegetation of mine tailings;and (4) to determine the influence of microbial inocula on phytostabilization including plant biomass production and development of the rhizosphere community.

Public Health Relevance

This project is focused on developing sound scientific principles for field application of phytostablization as a cost-effective remedial technology for abandoned and active mine tailings sites in arid and semi-arid environments. Major outcomes will include basic information and tools needed to successfully apply phytostabilization to the range of mine tailings types found in arid regions which will result in reduced exposures for surrounding communities and ecosystems.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-25
Application #
8659393
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
25
Fiscal Year
2014
Total Cost
$269,267
Indirect Cost
$91,533
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Gonzales, Patricia; Felix, Omar; Alexander, Caitlin et al. (2014) Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits. J Hazard Mater 280:619-26
Severson, Paul L; Vrba, Lukas; Stampfer, Martha R et al. (2014) Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen 775-776:48-54
Boitano, Scott; Hoffman, Justin; Tillu, Dipti V et al. (2014) Development and evaluation of small peptidomimetic ligands to protease-activated receptor-2 (PAR2) through the use of lipid tethering. PLoS One 9:e99140
Sollome, James J; Thavathiru, Elangovan; Camenisch, Todd D et al. (2014) HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal 26:70-82
Medeiros, Matthew; Le, Tam Minh; Troup, Daniel et al. (2014) Expression Of Selected Pathway-Marker Genes In Human Urothelial Cells Exposed Chronically To A Non-Cytotoxic Concentration Of Monomethylarsonous Acid. Toxicol Rep 1:421-434
Crosbie, Ewan; Sorooshian, Armin; Monfared, Negar Abolhassani et al. (2014) A Multi-Year Aerosol Characterization for the Greater Tehran Area Using Satellite, Surface, and Modeling Data. Atmosphere (Basel) 5:178-197
Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C et al. (2014) The impact of biostimulation on the fate of sulfate and associated sulfur dynamics in groundwater. J Contam Hydrol 164:240-50
Ramirez-Andreotta, Monica D; Brusseau, Mark L; Artiola, Janick F et al. (2014) Environmental Research Translation: enhancing interactions with communities at contaminated sites. Sci Total Environ 497-498:651-64
Csavina, Janae; Field, Jason; Félix, Omar et al. (2014) Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Sci Total Environ 487:82-90
Beamer, P I; Sugeng, A J; Kelly, M D et al. (2014) Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings. Environ Sci Process Impacts 16:1275-81

Showing the most recent 10 out of 312 publications