The proposed research addresses the broad SRP theme of Detection Research and more specifically the development of passive samplers for multi-chemical detection and determination of the degree of bioavailability in water and sediment.
Aim 1 will develop a universal passive sampling device (PSD) for measuring the time-weighted-average chronic exposure to hundreds of organic chemicals in water. We will advance the theory, design, and application of PSDs to a very broad range of physico-chemical properties (e.g., KOW = 0-9) so that nearly every organic chemical on the Superfund Priority List of Chemicals, and many of their metabolites, will be sampled by a single PSD. We hypothesize that a mixed-polymer sorptive phase contained within a non-selective and highly porous membrane will allow linear uptake of nearly all organic chemicals.
Aim 2 will establish the use of PSDs to measure the bioavailable fraction of PCBs and PCB metabolites in water, sediment, and soil. We will conduct laboratory bioavailability experiments with PCB-contaminated soil, sediment and water to advance our understanding of the mechanisms controlling PCB bioavailability and perform field verification at NPL sites. In collaboration with Project 1, we will use extracts of our samples to determine the relationship of our bioavailability measure to the dioxin toxic equivalency factor response in Project 1 cell assays.
Aim 3 will establish the use of PSDs to measure the bioavailable fraction of PAHs and PAH metabolites in water, sediment, and soil. In collaboration with Project 5, we will perform studies very similar to those in Aim 2 to develop the use of PSDs to measure PAH and PAH metabolite bioavailability under both controlled laboratory conditions and at NPL sites. This work will advance our understanding of and ability to measure the partitioning of PAHs and metabolites among dissolved organic carbon, soft and hard (soot) particulate carbon, weathered oil/oil product phases, and biota. We hypothesize that our novel PSD design will provide an accurate measure of bioavailable chronic exposure under a broad range of conditions and that PSD-derived data will overcome a critical barrier to more accurate estimates of bioavailability and risk.

Public Health Relevance

The proposed research addresses the broad SRP theme of Detection Research and more specifically the development of passive samplers for multi-chemical detection and determination of the degree of bioavailability in water and sediment. We will study over 100 of the chemicals on the CERCLA Priority List of chemicals and perform field validation studies at several NPL sites.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES005948-21
Application #
8659404
Study Section
Special Emphasis Panel (ZES1-LWJ-V)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
21
Fiscal Year
2014
Total Cost
$320,748
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Reif, David M; Truong, Lisa; Mandrell, David et al. (2016) High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Arch Toxicol 90:1459-70
Brooks, Samira A; Martin, Elizabeth; Smeester, Lisa et al. (2016) miRNAs as common regulators of the transforming growth factor (TGF)-β pathway in the preeclamptic placenta and cadmium-treated trophoblasts: Links between the environment, the epigenome and preeclampsia. Food Chem Toxicol 98:50-57
Wu, Tao P; Wang, Tao; Seetin, Matthew G et al. (2016) DNA methylation on N(6)-adenine in mammalian embryonic stem cells. Nature 532:329-33
Zabinski, Joseph W; Garcia-Vargas, Gonzalo; Rubio-Andrade, Marisela et al. (2016) Advancing Dose-Response Assessment Methods for Environmental Regulatory Impact Analysis: A Bayesian Belief Network Approach Applied to Inorganic Arsenic. Environ Sci Technol Lett 3:200-204
Tian, Xu; Patel, Keyur; Ridpath, John R et al. (2016) Homologous Recombination and Translesion DNA Synthesis Play Critical Roles on Tolerating DNA Damage Caused by Trace Levels of Hexavalent Chromium. PLoS One 11:e0167503
Smith, Martyn T; Guyton, Kathryn Z; Gibbons, Catherine F et al. (2016) Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. Environ Health Perspect 124:713-21
Chappell, Grace; Silva, Grace O; Uehara, Takeki et al. (2016) Characterization of copy number alterations in a mouse model of fibrosis-associated hepatocellular carcinoma reveals concordance with human disease. Cancer Med 5:574-85
Sharma, Vyom; Collins, Leonard B; Chen, Ting-Huei et al. (2016) Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget 7:25377-90
Lai, Yongquan; Yu, Rui; Hartwell, Hadley J et al. (2016) Measurement of Endogenous versus Exogenous Formaldehyde-Induced DNA-Protein Crosslinks in Animal Tissues by Stable Isotope Labeling and Ultrasensitive Mass Spectrometry. Cancer Res 76:2652-61
Adrion, Alden C; Nakamura, Jun; Shea, Damian et al. (2016) Screening Nonionic Surfactants for Enhanced Biodegradation of Polycyclic Aromatic Hydrocarbons Remaining in Soil After Conventional Biological Treatment. Environ Sci Technol 50:3838-45

Showing the most recent 10 out of 453 publications