The Chemistry and Analytical Core of the UNC-SRP is a research support core that provides analytical support to the research projects and synthesis, purification and characterization of chemicals that are not available commercially or that can be cost-effectively prepared in-house. The Chemistry Core offers particular expertise in preparation of standards and internal standards labeled with stable isotopes ([15]N, [13]C, [2]H) that allow development of assays using mass spectrometric techniques for highly specific and highly sensitive identification and quantitation. The specific goals of the Chemistry Core are based on the aims and accomplishments of the individual research projects, and thus will evolve in response to research needs. The overall aims of the Chemistry and Analytical Core include: (1) provide advice and consultation on analytical methodology and chemical handling, including analytical method development, appropriate choice of analytes, instrumentation, and standards (Projects 1, 2, 3, 4 and 5);(2) develop analytical methodology, including gas and liquid chromatography, for detection and quantitation of parent compounds, degradation products, metabolites, and macromolecular adducts (Projects 1, 2, and 5);(3) provide service in carrying out routine assays for detection and measurement by quantitative spectroscopy and mass spectrometry of PAH, PAH metabolites, PCBs, oxidative damage, and macromolecular adducts (Projects 1, 2, 3 and 5);(4) prepare novel and rare chemicals, including isotope-labeled chemicals, devise synthetic routes and offer advice and guidance for UNC-SRP researchers wishing to undertake syntheses and product purification with their own personnel, or carry out the entire preparation as needed (Projects 1, 2, 4 and 5);(5) analysis and structural identification of unknown degradation products, metabolites, and macromolecular adducts and provide expertise in interpretation of spectral data in support of structural elucidation (Projects 1, 2, 4 and 5). Specific major tasks include preparation of [[13]C]-labeled vinyl carbamate and its epoxide for Project 1, assisting Project 2 with assay of trichloroethylene metabolites, assisting Project 4 with assays of environmental complex mixtures, assisting Project 5 with fractionation of extracts of bioremediated soil and identification of genotoxically-active constituents of the extracts and preparation of [U-[13]C] PAH quinones, and providing assays of biomarkers of oxidative stress as needed for Projects 1-5.

Public Health Relevance

The syntheses and analytical services offered by the Chemistry and Analytical Core will provide the infrastructure for analyses and assays that are critical for evaluating exposure to hazardous environmental chemicals and for understanding the role of oxidative stress in determining health outcomes, in the context of improving the science supporting assessment of the risks associated with exposure to chemicals at Superfund hazardous waste sites.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES005948-21
Application #
8659409
Study Section
Special Emphasis Panel (ZES1-LWJ-V)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
21
Fiscal Year
2014
Total Cost
$394,252
Indirect Cost
$128,666
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Laine, Jessica E; Bailey, Kathryn A; Rubio-Andrade, Marisela et al. (2015) Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico. Environ Health Perspect 123:186-92
Edwards, Sharon E; Maxson, Pamela; Miranda, Marie Lynn et al. (2015) Cadmium levels in a North Carolina cohort: Identifying risk factors for elevated levels during pregnancy. J Expo Sci Environ Epidemiol 25:427-32
Rojas, Daniel; Rager, Julia E; Smeester, Lisa et al. (2015) Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci 143:97-106
Bailey, Kathryn A; Fry, Rebecca C (2014) Arsenic-Associated Changes to the Epigenome: What Are the Functional Consequences? Curr Environ Health Rep 1:22-34
Hu, Jing; Adrion, Alden C; Nakamura, Jun et al. (2014) Bioavailability of (Geno)toxic Contaminants in Polycyclic Aromatic Hydrocarbon-Contaminated Soil Before and After Biological Treatment. Environ Eng Sci 31:176-182
Chiu, Weihsueh A; Campbell Jr, Jerry L; Clewell 3rd, Harvey J et al. (2014) Physiologically based pharmacokinetic (PBPK) modeling of interstrain variability in trichloroethylene metabolism in the mouse. Environ Health Perspect 122:456-63
Rusyn, Ivan; Lemon, Stanley M (2014) Mechanisms of HCV-induced liver cancer: what did we learn from in vitro and animal studies? Cancer Lett 345:210-5
Lu, Sixin S; Sobus, Jon R; Sallsten, Gerd et al. (2014) Are urinary PAHs biomarkers of controlled exposure to diesel exhaust? Biomarkers 19:332-9
Nakamura, Jun; Mutlu, Esra; Sharma, Vyom et al. (2014) The endogenous exposome. DNA Repair (Amst) 19:3-13
Mishamandani, Sara; Gutierrez, Tony; Aitken, Michael D (2014) DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation. Front Microbiol 5:76

Showing the most recent 10 out of 329 publications