The toxic heavy metal cadmium is a high priority contaminant identified at more than one third of all Superfund Sites. While cadmium is a known and well-studied carcinogen, here we will address cadmium's effects as a developmental toxicant. Newborns exposed to cadmium during the prenatal period have increased risk for poor birth outcomes, including low birthweight. In addition to the immediate postnatal concerns, low birthweight is also associated with increased risk for chronic diseases later in life, such as diabetes, hypertension, and cardiovascular disease. While poor birth outcomes have been associated with environmental exposure to cadmium and other metals, the underlying biological mechanisms remain under studied. Integrating our preliminary findings and our interest in understanding how metal exposure influences pregnancy outcome in the United States, we will examine gene-environment interactions that influence cadmium-induced signaling of inflammatory response genes and will determine the association of pathway modulation with birthweight. We hypothesize that gene-environment interactions influence cadmium's effects on signaling of inflammatory response genes and that this signaling is associated with newborn birth outcomes. This study will use complementary in vitro and in vivo approaches to test our hypothesis. To identify genes that influence cadmium-induced toxicity, we will use a panel of cell lines derived from a genetically diverse human population. The integrated in vivo aims will assess the impact of fetal genotypes of inflammatory response genes on newborn birthweight and the interaction effects between fetal genotypes and cadmium exposure. The modulation of the expression levels of members of inflammatory response genes in newborns and association with maternal cadmium exposure will be determined. The role of DNA methylation in controlling the gene expression alterations will be established. The results obtained from the proposed research will help to elucidate molecular pathways associated with cadmium-induced toxicity and disease.

Public Health Relevance

Cadmium is not only a known human carcinogen, but is also a developmental toxicant. Here we will study gene-environment interactions of cadmium-induced effects on newborn birthweight in a pregnancy cohort from North Carolina. Results from this work will help identify genetic bases for cadmium-induced changes low birthweight and determine reasons for susceptibility.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Reif, David M; Truong, Lisa; Mandrell, David et al. (2016) High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Arch Toxicol 90:1459-70
Brooks, Samira A; Martin, Elizabeth; Smeester, Lisa et al. (2016) miRNAs as common regulators of the transforming growth factor (TGF)-β pathway in the preeclamptic placenta and cadmium-treated trophoblasts: Links between the environment, the epigenome and preeclampsia. Food Chem Toxicol 98:50-57
Wu, Tao P; Wang, Tao; Seetin, Matthew G et al. (2016) DNA methylation on N(6)-adenine in mammalian embryonic stem cells. Nature 532:329-33
Zabinski, Joseph W; Garcia-Vargas, Gonzalo; Rubio-Andrade, Marisela et al. (2016) Advancing Dose-Response Assessment Methods for Environmental Regulatory Impact Analysis: A Bayesian Belief Network Approach Applied to Inorganic Arsenic. Environ Sci Technol Lett 3:200-204
Tian, Xu; Patel, Keyur; Ridpath, John R et al. (2016) Homologous Recombination and Translesion DNA Synthesis Play Critical Roles on Tolerating DNA Damage Caused by Trace Levels of Hexavalent Chromium. PLoS One 11:e0167503
Smith, Martyn T; Guyton, Kathryn Z; Gibbons, Catherine F et al. (2016) Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. Environ Health Perspect 124:713-21
Chappell, Grace; Silva, Grace O; Uehara, Takeki et al. (2016) Characterization of copy number alterations in a mouse model of fibrosis-associated hepatocellular carcinoma reveals concordance with human disease. Cancer Med 5:574-85
Sharma, Vyom; Collins, Leonard B; Chen, Ting-Huei et al. (2016) Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget 7:25377-90
Lai, Yongquan; Yu, Rui; Hartwell, Hadley J et al. (2016) Measurement of Endogenous versus Exogenous Formaldehyde-Induced DNA-Protein Crosslinks in Animal Tissues by Stable Isotope Labeling and Ultrasensitive Mass Spectrometry. Cancer Res 76:2652-61
Adrion, Alden C; Nakamura, Jun; Shea, Damian et al. (2016) Screening Nonionic Surfactants for Enhanced Biodegradation of Polycyclic Aromatic Hydrocarbons Remaining in Soil After Conventional Biological Treatment. Environ Sci Technol 50:3838-45

Showing the most recent 10 out of 453 publications