Bioremediation is an established technology for removing PAHs from contaminated soil, but previous studies have shown that it does not always lead to a reduction in toxicity. The causes of toxicity and the mechanisms by which toxicity might be avoided or diminished are not well-understood. We hypothesize that metabolites produced by PAH-degrading bacteria, which have been observed to accumulate in field-contaminated soil and sediment, are responsible at least in part for the toxicity that can result from bioremediation. We also hypothesize that bioremediation conditions influence the community of PAH-degrading microorganisms in contaminated soil, which in turn influences both PAH removal and the extent to which metabolites might accumulate. We propose to explore the effects of bioremediation conditions on PAH removal and soil toxicity, using a slurry-phase bioreactor as the experimental platform. Among the conditions we will evaluate is the addition of a hydrophobic surfactant at a low dose, which we recently demonstrated can improve the bioavailability and biodegradation of PAHs that remained in a field-contaminated soil after conventional bioremediation. This approach will be developed further by demonstrating its efficacy in a semi-continuous process. We will combine our recent work on stable-isotope probing with a high-throughput DNA sequencing method to identify the PAH-degrading bacteria most likely to influence PAH removal, metabolite accumulation, and toxicity in the treated soil. Genomes of these organisms will be sequenced to identify genes associated with PAH metabolism, and the key genes will be expressed. Differences in the ability to metabolize various PAHs will be correlated to sequence differences in these genes so that genetic determinants of metabolite accumulation can be identified. In parallel, we will use fractionation techniques and advanced analytical tools to identify compounds responsible for toxicity of the treated soil. Finally, variables that can be controlled during bioremediation will be evaluated for their ability to preclude or mitigate toxicity. Our overall goal is to fill key gaps in knowledge that will inform and improve field applications of bioremediation that lead to true reductions in risk.

Public Health Relevance

This project is relevant to public health because it will broaden our understanding of risk reduction via bioremediation and will develop approaches to reducing risks. It is relevant to Superfund because it focuses on remediation of soil contaminated with PAHs, which are among the contaminants of most concern at Superfund sites.

Agency
National Institute of Health (NIH)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
3P42ES005948-21S1
Application #
8885020
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
Budget End
Support Year
21
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
City
Chapel Hill
State
NC
Country
United States
Zip Code
Laine, Jessica E; Bailey, Kathryn A; Rubio-Andrade, Marisela et al. (2015) Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico. Environ Health Perspect 123:186-92
Edwards, Sharon E; Maxson, Pamela; Miranda, Marie Lynn et al. (2015) Cadmium levels in a North Carolina cohort: Identifying risk factors for elevated levels during pregnancy. J Expo Sci Environ Epidemiol 25:427-32
Rojas, Daniel; Rager, Julia E; Smeester, Lisa et al. (2015) Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci 143:97-106
Bailey, Kathryn A; Fry, Rebecca C (2014) Arsenic-Associated Changes to the Epigenome: What Are the Functional Consequences? Curr Environ Health Rep 1:22-34
Hu, Jing; Adrion, Alden C; Nakamura, Jun et al. (2014) Bioavailability of (Geno)toxic Contaminants in Polycyclic Aromatic Hydrocarbon-Contaminated Soil Before and After Biological Treatment. Environ Eng Sci 31:176-182
Chiu, Weihsueh A; Campbell Jr, Jerry L; Clewell 3rd, Harvey J et al. (2014) Physiologically based pharmacokinetic (PBPK) modeling of interstrain variability in trichloroethylene metabolism in the mouse. Environ Health Perspect 122:456-63
Rusyn, Ivan; Lemon, Stanley M (2014) Mechanisms of HCV-induced liver cancer: what did we learn from in vitro and animal studies? Cancer Lett 345:210-5
Lu, Sixin S; Sobus, Jon R; Sallsten, Gerd et al. (2014) Are urinary PAHs biomarkers of controlled exposure to diesel exhaust? Biomarkers 19:332-9
Nakamura, Jun; Mutlu, Esra; Sharma, Vyom et al. (2014) The endogenous exposome. DNA Repair (Amst) 19:3-13
Mishamandani, Sara; Gutierrez, Tony; Aitken, Michael D (2014) DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation. Front Microbiol 5:76

Showing the most recent 10 out of 329 publications