The overall objective of this Superfund Basic Research Program Project on toxic metals is to understand the human health impact of exposure to arsenic and mercury from environmental and anthropogenic sources. This program consists of three biomedical and two non-biomedical research projects, two scientific support cores, and an Administrative, Research Translation and Training Core. Projects 2 (Hamilton) and 8 (Stanton) are molecular toxicology projects investigating the molecular mechanisms by which arsenic elicits its adverse health effects, focusing on endocrine disruption and disruption of membrane protein trafficking and function, respectively. Project 7 (Chen) is an ecotoxicology project examining how mercury bioaccumulates in fish, and Project 9 is a plant biology project focusing on bioaccumulation of arsenic in rice, each focusing on how these lead to human exposures of concern. Project 4 (Karagas) is examining the human health effects of exposure to arsenic and mercury, focusing on reproductive and developmental effects in offspring of pregnant women in New Hampshire who are exposed to these toxicants via their food (arsenic and mercury) and well water (arsenic). Core B (Jackson) is a Trace Elements Analysis Core that provides state-of-the-art ultra-low level detection, quantitation and speciation of arsenic and mercury. Core E (Moore) is an Integrative Biology Core that provides comprehensive support and integration of knowledge from the project-specific molecular biology, genomics, proteomics, bioinformatics, biostatistics and modeling analysis (each provided by individual cores at Dartmouth) to the program in order to more fully understand, integrate and translate this knowledge to stakeholders. The investigators'Research Translation Core is designed to effectively facilitate this translation by assisting them in communicating the proper information in the most effective and appropriate way to each stakeholder group. The Training Core is designed to exploit their highly interdisciplinary and collaborative program in order to foster the most effective training of their students. The goal is to provide the very best science that can be used for more effective science-based risk assessments, for predicting the specific patho-physiological consequences of arsenic and mercury exposure, for assessing gene-environment, agent-agent and other complex environmental interactions, for assessing specifically sensitive sub-populations at elevated risk, and for developing effective interventions for these exposed populations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
3P42ES007373-18S1
Application #
8671914
Study Section
Special Emphasis Panel (ZES1-JAB-C (S7))
Program Officer
Carlin, Danielle J
Project Start
1997-04-01
Project End
2014-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
18
Fiscal Year
2013
Total Cost
$9,990
Indirect Cost
$740
Name
Dartmouth College
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Chen, Celia Y; Borsuk, Mark E; Bugge, Deenie M et al. (2014) Benthic and pelagic pathways of methylmercury bioaccumulation in estuarine food webs of the northeast United States. PLoS One 9:e89305
Shaw, Joseph R; Hampton, Thomas H; King, Benjamin L et al. (2014) Natural selection canalizes expression variation of environmentally induced plasticity-enabling genes. Mol Biol Evol 31:3002-15
Sverrisson, Einar F; Zens, Michael S; Fei, Dennis Liang et al. (2014) Clinicopathological correlates of Gli1 expression in a population-based cohort of patients with newly diagnosed bladder cancer. Urol Oncol 32:539-45
Taylor, Vivien F; Bugge, Deenie; Jackson, Brian P et al. (2014) Pathways of CH3Hg and Hg ingestion in benthic organisms: an enriched isotope approach. Environ Sci Technol 48:5058-65
Torres, Iviana M; Patankar, Yash R; Shabaneh, Tamer B et al. (2014) Acidosis potentiates the host proinflammatory interleukin-1? response to Pseudomonas aeruginosa infection. Infect Immun 82:4689-97
Gosse, Julie A; Taylor, Vivien F; Jackson, Brian P et al. (2014) Monomethylated trivalent arsenic species disrupt steroid receptor interactions with their DNA response elements at non-cytotoxic cellular concentrations. J Appl Toxicol 34:498-505
Kwon, Sae Yun; Blum, Joel D; Chen, Celia Y et al. (2014) Mercury isotope study of sources and exposure pathways of methylmercury in estuarine food webs in the Northeastern U.S. Environ Sci Technol 48:10089-97
Pan, Qinxin; Hu, Ting; Malley, James D et al. (2014) A system-level pathway-phenotype association analysis using synthetic feature random forest. Genet Epidemiol 38:209-19
Wyszynski, Asaf; Tanyos, Sam A; Rees, Judy R et al. (2014) Body mass and smoking are modifiable risk factors for recurrent bladder cancer. Cancer 120:408-14
Norton, Gareth J; Douglas, Alex; Lahner, Brett et al. (2014) Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLoS One 9:e89685

Showing the most recent 10 out of 213 publications