Project 1: Abstract Rice (Oryza sativa), a staple food for over half the world's population, represents a significant dietary source of inorganic arsenic (As), a non-threshold, class 1 human carcinogen. It is imperative that strategies to reduce grain As are developed, and establishing the mechanisms that enable As to reach and accumulate within the rice grain is key to this endeavor. This project will elucidate the genetic control of As homeostasis in plants to enable the development of plants that do not accumulate As. The first specific aim tests the hypothesis that genetic diversity in rice can be exploited to lower grain As levels by mapping genes in accessions known to vary in grain As content.
The second aim asks more generally what genes are involved in transferring As to the grain and the third aim tests strategies to limit the movement of As to the shoot/grain based on information gained from study of rice, Arabidopsis and the As accumulating fern Pteris vittata. The long-term goal is to prevent As accumulation in the edible portion of rice grain, but the work will also potentially provide information on genes responsible for transporting As and other contaminant metal(loid)s into the tissues of other edible plant organs. In addition to identifying the causal loci, synchrotron X-ray fluorescence microanalysis (SXRF) will be used to precisely localize and speciate As in plants, an innovative approach that has been used successfully to examine seed loading of As.

Public Health Relevance

Project 1: Narrative Our efforts to select rice cultivars that restrict As accumulation in the grain offers one of the simplest and most cost effective approaches to solving the problem of As contamination of rice and rice-based products. These cultivars could immediately be used in As contaminated regions, as well as being suitable genetic stock for breeding programs to introduce low grain As into varieties suitable for commercial rice production.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES007373-19A1
Application #
8650448
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
19
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Dartmouth College
Department
Type
DUNS #
City
Hanover
State
NH
Country
United States
Zip Code
03755
Jonsson, Sofi; Mazrui, Nashaat M; Mason, Robert P (2016) Dimethylmercury Formation Mediated by Inorganic and Organic Reduced Sulfur Surfaces. Sci Rep 6:27958
Goossens, Maria E; Isa, Fatima; Brinkman, Maree et al. (2016) International pooled study on diet and bladder cancer: the bladder cancer, epidemiology and nutritional determinants (BLEND) study: design and baseline characteristics. Arch Public Health 74:30
Kwon, Sae Yun; Blum, Joel D; Chen, Celia Y et al. (2016) Correction to Mercury Isotope Study of Sources and Exposure Pathways of Methylmercury in Estuarine Food Webs in the Northeastern U.S. Environ Sci Technol 50:3283
Lee, Cheng-Shiuan; Lutcavage, Molly E; Chandler, Emily et al. (2016) Declining Mercury Concentrations in Bluefin Tuna Reflect Reduced Emissions to the North Atlantic Ocean. Environ Sci Technol 50:12825-12830
Taylor, Vivien; Goodale, Britton; Raab, Andrea et al. (2016) Human exposure to organic arsenic species from seafood. Sci Total Environ :
Gribble, Matthew O; Karimi, Roxanne; Feingold, Beth J et al. (2016) Mercury, selenium and fish oils in marine food webs and implications for human health. J Mar Biol Assoc U.K. 96:43-59
Taylor, Vivien F; Jackson, Brian P (2016) Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture. Chemosphere 163:6-13
Karimi, Roxanne; Chen, Celia Y; Folt, Carol L (2016) Comparing nearshore benthic and pelagic prey as mercury sources to lake fish: the importance of prey quality and mercury content. Sci Total Environ 565:211-21
Gilbert-Diamond, Diane; Emond, Jennifer A; Baker, Emily R et al. (2016) Relation between in Utero Arsenic Exposure and Birth Outcomes in a Cohort of Mothers and Their Newborns from New Hampshire. Environ Health Perspect 124:1299-307
Farzan, Shohreh F; Gossai, Anala; Chen, Yu et al. (2016) Maternal arsenic exposure and gestational diabetes and glucose intolerance in the New Hampshire birth cohort study. Environ Health 15:106

Showing the most recent 10 out of 308 publications