Project 2: Abstract Consumption of fish contaminated with mercury is a serious public health concern in the US and globally. Marine fish are the most important agents of exposure for humans to methylmercury (MeHg), the most toxic form of mercury. MeHg exposure is of particular concern for pregnant women and children and has known neurological, developmental, cardiovascular, and immunological effects. The overall goal of Project 2 is to determine how changes in multiple environmental factors will alter the production and fate of MeHg in estuarine food webs, which are important pathways of exposure to humans. We will investigate the interactive effects (additive and non-additive) of changes in temperature, salinity, and carbon content on the production and fate of MeHg in coastal marine systems in order to predict the net influence of regional variability as well as climate change on human exposure to MeHg. The project will utilize field studies and laboratory experiments to measure the effect of a range of environmentally relevant temperatures, salinities, and carbon loads on microbial activity, Hg methylation and MeHg demethylation rates, sediment MeHg content and Hg and MeHg flux from sediments to overlying water. Laboratory and mesocosm experiments will be conducted to examine the individual and combined effects of temperature, salinity and organic carbon on the bioconcentration of MeHg into phytoplankton, and trophic transfer to zooplankton and fish that are prey for higher trophic level fish consumed by humans. Field work and mesocosms experiments will be undertaken in estuaries located at different latitudes with high and low carbon concentrations in sediments in order to compare MeHg processes under different biogeochemical and temperature regimes. Data obtained from laboratory and field experiments will be used to parameterize and link current fate, transport, and bioaccumulation models with human exposure models. These combined approaches will improve our understanding of the impact of complex environmental alterations on MeHg fate and bioaccumulation in marine ecosystems, and the impact of these factors on MeHg exposure to humans.

Public Health Relevance

Project 2: Narrative Hg is a widespread contaminant in marine fish that has neurological, immunological, and cardiovascular effects on humans. Pregnant women and children are the most vulnerable populations. The proposed study will allow us to understand how changes in the environment will affect MeHg fate and bioaccumulation in fish and resulting impacts on human exposure to MeHg through fish consumption.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
3P42ES007373-19A1S1
Application #
8881878
Study Section
Special Emphasis Panel (ZES1-LKB-K)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-03-31
Support Year
19
Fiscal Year
2014
Total Cost
$1,200
Indirect Cost
$89
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Jonsson, Sofi; Mazrui, Nashaat M; Mason, Robert P (2016) Dimethylmercury Formation Mediated by Inorganic and Organic Reduced Sulfur Surfaces. Sci Rep 6:27958
Goossens, Maria E; Isa, Fatima; Brinkman, Maree et al. (2016) International pooled study on diet and bladder cancer: the bladder cancer, epidemiology and nutritional determinants (BLEND) study: design and baseline characteristics. Arch Public Health 74:30
Kwon, Sae Yun; Blum, Joel D; Chen, Celia Y et al. (2016) Correction to Mercury Isotope Study of Sources and Exposure Pathways of Methylmercury in Estuarine Food Webs in the Northeastern U.S. Environ Sci Technol 50:3283
Lee, Cheng-Shiuan; Lutcavage, Molly E; Chandler, Emily et al. (2016) Declining Mercury Concentrations in Bluefin Tuna Reflect Reduced Emissions to the North Atlantic Ocean. Environ Sci Technol 50:12825-12830
Taylor, Vivien; Goodale, Britton; Raab, Andrea et al. (2016) Human exposure to organic arsenic species from seafood. Sci Total Environ :
Gribble, Matthew O; Karimi, Roxanne; Feingold, Beth J et al. (2016) Mercury, selenium and fish oils in marine food webs and implications for human health. J Mar Biol Assoc U.K. 96:43-59
Taylor, Vivien F; Jackson, Brian P (2016) Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture. Chemosphere 163:6-13
Karimi, Roxanne; Chen, Celia Y; Folt, Carol L (2016) Comparing nearshore benthic and pelagic prey as mercury sources to lake fish: the importance of prey quality and mercury content. Sci Total Environ 565:211-21
Gilbert-Diamond, Diane; Emond, Jennifer A; Baker, Emily R et al. (2016) Relation between in Utero Arsenic Exposure and Birth Outcomes in a Cohort of Mothers and Their Newborns from New Hampshire. Environ Health Perspect 124:1299-307
Farzan, Shohreh F; Gossai, Anala; Chen, Yu et al. (2016) Maternal arsenic exposure and gestational diabetes and glucose intolerance in the New Hampshire birth cohort study. Environ Health 15:106

Showing the most recent 10 out of 308 publications