Project 3: Abstract Arsenic (As) is the number one environmental chemical of concern with regard to human health in the US. Epidemiological studies have shown that exposure to As increases lung disease, including pneumonia, and chronic obstructive pulmonary disease. In studies on experimental animals low levels of As inhibit the ability of the innate immune system to eliminate respiratory infections, and down regulate the expression of innate immune genes, but the molecular mechanisms whereby As inhibits the innate immune system is unknown. Moreover, the effects of inorganic versus organic As on the innate immune system is unknown. Accordingly, the goal of this application is to test the hypothesis that inorganic and organic forms have differential, dose dependent effects on the Pseudomonas aeruginosa (Pa) infections in the lung by adversely affecting the innate immune response. This will be investigated in two specific aims.
Specific Aim #1 will test the hypothesis that arsenite, monomethylarsonic acid (MMA) and dimetheylarsinic acid (DMA) have differential, dose dependent effects on the secretion of proinflammatory cytokines by human bronchial epithelial (HBE) cells and macrophages in response to Pa. Studies will be conducted to examine the effects of arsenite, MMA and DMA, at levels relevant to the US population, on cytokine production by HBE cells and macrophages exposed to Pa.
Specific Aim #2 will test the hypothesis that arsenite, MMA and DMA have differential, dose dependent effects on the expression of proinflammatory cytokine genes by HBE cells and macrophages in response to Pa by selectively regulating microRNA (miRNA) expression. Using advanced bioinformatic and molecular biological approaches, studies will be conducted to elucidate how miRNAs regulated by As modulate the inflammatory response to Pa. These studies will provide novel information regarding the dose and species dependent effects of arsenite, MMA and DMA, at levels relevant to the US population, on the immune response to Ps, a pathogen that causes significant morbidity and mortality in the US, as well as provide novel insight into the molecular mechanism(s) whereby As modulates the innate immune response of the human lung to Pa.

Public Health Relevance

Project 3: Narrative Environmental exposure to arsenic is associated with increased risk of lung disease. The goal of this project is to examine the effects of inorganic versus organic arsenic on the immune response of the lungs to infection by P. aeruginosa, a common cause of respiratory infections. These studies will provide novel information that will be useful to stakeholders, including the FDA, in discussions on food safety standards.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
3P42ES007373-19A1S1
Application #
8881879
Study Section
Special Emphasis Panel (ZES1-LKB-K)
Project Start
2014-07-01
Project End
2015-03-31
Budget Start
2014-07-01
Budget End
2015-03-31
Support Year
19
Fiscal Year
2014
Total Cost
$1,200
Indirect Cost
$89
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Punshon, Tracy; Carey, Anne-Marie; Ricachenevsky, Felipe Klein et al. (2018) Elemental distribution in developing rice grains and the effect of flag-leaf arsenate exposure. Environ Exp Bot 149:51-58
Liu, Maodian; Zhang, Qianru; Luo, Yao et al. (2018) Impact of Water-Induced Soil Erosion on the Terrestrial Transport and Atmospheric Emission of Mercury in China. Environ Sci Technol 52:6945-6956
Chen, Celia Y; Driscoll, Charles T (2018) Integrating mercury research and policy in a changing world. Ambio 47:111-115
Liu, Maodian; He, Yipeng; Baumann, Zofia et al. (2018) Traditional Tibetan Medicine Induced High Methylmercury Exposure Level and Environmental Mercury Burden in Tibet, China. Environ Sci Technol 52:8838-8847
Taylor, Vivien F; Li, Zhigang; Sayarath, Vicki et al. (2018) Author Correction: Distinct arsenic metabolites following seaweed consumption in humans. Sci Rep 8:4145
Emond, Jennifer A; Karagas, Margaret R; Baker, Emily R et al. (2018) Better Diet Quality during Pregnancy Is Associated with a Reduced Likelihood of an Infant Born Small for Gestational Age: An Analysis of the Prospective New Hampshire Birth Cohort Study. J Nutr 148:22-30
Jackson, Brian P (2018) Low level determination of gallium isotopes by ICP-QQQ. J Anal At Spectrom 33:897-900
Nachman, Keeve E; Punshon, Tracy; Rardin, Laurie et al. (2018) Opportunities and Challenges for Dietary Arsenic Intervention. Environ Health Perspect 126:84503
Koutros, Stella; Baris, Dalsu; Waddell, Richard et al. (2018) Potential effect modifiers of the arsenic-bladder cancer risk relationship. Int J Cancer 143:2640-2646
Liu, Maodian; Chen, Long; He, Yipeng et al. (2018) Impacts of farmed fish consumption and food trade on methylmercury exposure in China. Environ Int 120:333-344

Showing the most recent 10 out of 372 publications