The University of Kentucky is unique among land grant universities in that all colleges, including Medicine and Agriculture, are located on the same campus. This constellation of programs has enabled the UK-SBRP to develop uniquely productive collaborations across diverse disciplines. Such an environment will allow to study the overall theme of the SBRP research, which focuses on the toxicology of Superfund chemicals and how health effects of exposure can be modulated by both intrinsic and extrinsic factors, namely genetics and nutrition, respectively. Given the abundance of Superfund chemicals and widespread distribution in the ecosystem, it is unlikely that remediation alone will be sufficient to address their health risks. Nutritional intervention thus becomes a sensible way to address health problems associated with environmental pollutants. In the competing renewal, the investigators recognize this dual need for sensing/remediation and biomedical intervention through nutrition by proposing five integrated projects. The investigators will concentrate on chlorinated organics (e.g., polychlorinated biphenyls) prevalent in most Superfund sites, including those found in Kentucky. Preliminary findings by this group suggest that nutrition and dietary habits can markedly influence mechanisms of toxicity of the above-mentioned Superfund chemicals. Thus, a major objective of our SBRP is to explore the paradigm that nutrition can modify Superfund chemical toxicity. All biomedical projects will focus on chronic diseases associated with vascular dysfunction, such as cardiovascular disease, cancer metastasis, and obesity-related abdominal aortic aneurysms, and will utilize a similar dietary fat regimen to study nutrient/toxicant interactions. There will be significant cross-talk with non-biomedical projects, which will explore novel techniques for both remediation (detoxification) and biosensors associated with detection of PCBs and other chlorinated organics. Results from interdisciplinary research will be utilized for information/education, technology transfer, training, policy and translational purposes as part of the objectives of the Research Translation, Community Outreach, and Training Cores. Nutrition may be the most sensible means to develop primary prevention strategies of diseases associated with many environmental toxic insults. Thus, research proposed by the investigators may lead to novel dietary recommendations at the national level for populations at risk, thus improving the health of people residing near Superfund sites.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-JAB-C (S7))
Program Officer
Henry, Heather F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kentucky
Veterinary Sciences
Schools of Earth Sciences/Natur
United States
Zip Code
Hofe, Carolyn R; Feng, Limin; Zephyr, Dominique et al. (2014) Fruit and vegetable intake, as reflected by serum carotenoid concentrations, predicts reduced probability of polychlorinated biphenyl-associated risk for type 2 diabetes: National Health and Nutrition Examination Survey 2003-2004. Nutr Res 34:285-93
Xiao, Li; Isner, Austin; Waldrop, Krysta et al. (2014) Development of Bench and Full-Scale Temperature and pH Responsive Functionalized PVDF Membranes with Tunable Properties. J Memb Sci 457:39-49
Narbonne, Jean-François; Robertson, Larry W (2014) 7th International PCB Workshop: Chemical mixtures in a complex world. Environ Sci Pollut Res Int 21:6269-75
Petriello, Michael C; Newsome, Bradley J; Dziubla, Thomas D et al. (2014) Modulation of persistent organic pollutant toxicity through nutritional intervention: emerging opportunities in biomedicine and environmental remediation. Sci Total Environ 491-492:11-6
Newsome, Bradley J; Petriello, Michael C; Han, Sung Gu et al. (2014) Green tea diet decreases PCB 126-induced oxidative stress in mice by up-regulating antioxidant enzymes. J Nutr Biochem 25:126-35
Eske, Katryn; Newsome, Bradley; Han, Sung Gu et al. (2014) PCB 77 dechlorination products modulate pro-inflammatory events in vascular endothelial cells. Environ Sci Pollut Res Int 21:6354-64
Petriello, Michael C; Han, Sung Gu; Newsome, Bradley J et al. (2014) PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling. Toxicol Appl Pharmacol 277:192-9
Równicka-Zubik, Joanna; Su?kowski, Leszek; Toborek, Michal (2014) Interactions of PCBs with human serum albumin: in vitro spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 124:632-7
Hernández, Sebastián; Papp, Joseph K; Bhattacharyya, Dibakar (2014) Iron-Based Redox Polymerization of Acrylic Acid for Direct Synthesis of Hydrogel/Membranes, and Metal Nanoparticles for Water Treatment. Ind Eng Chem Res 53:1130-1142
Petriello, Michael C; Newsome, Bradley; Hennig, Bernhard (2014) Influence of nutrition in PCB-induced vascular inflammation. Environ Sci Pollut Res Int 21:6410-8

Showing the most recent 10 out of 174 publications