Due to their relative chemical stability and ubiquity in the environment, chlorinated organic contaminants such as polychlorinated biphenyls (PCBs) and trichloroethylene (TCE) pose significant health risks and enduring remediation challenges. For example, extensive PCB contamination at the Paducah Gaseous Diffusion Plant, the largest Superfund site in Kentucky, is of major concern for its health consequences. The University of Kentucky Superfund Research Center (UK-SRC) provides a focused transdisciplinary research, training and translation environment to address human health challenges associated with such exposures. Preliminary findings suggest that nutrition-based concepts and exercise can markedly influence the mechanisms of toxicity of chlorinated organics. Indeed, healthful nutrition/nutritional components may provide a platform to develop primary prevention strategies for diseases associated with environmental toxic insults, while also providing the basis for new risk assessment paradigms. Further, novel iron-based, nano-structured capture/sensing and remediation systems based on biomimetic binding domains and functionalized/responsive membrane platforms offer potential for sustainable advances in technical capability for site remediation. The UK-SRC proposes to reduce risk by: 1) developing lifestyle-related modulators of environmental disease and elucidating relevant protective mechanisms, and 2) developing technologically effective and economically efficient methods for capture/sensing and remediation of PCBs. Three biomedical and two environmental science projects, a Research Support Core, and Administrative, Research Translation, Community Engagement and Training Cores collectively advance understanding of toxicant-induced mechanisms of disease, introduce sustainable approaches for remediation and enhance stakeholder and community capacity to act. Biomedical projects focus on models of inflammation and associated changes in redox status and inflammatory cytokines in vascular (Project 1), fetal (Project 2) and adipose (Project 3) tissues with relevance to atherosclerosis, insulin resistance/diabetes and obesity. Environmental science projects employ nanomaterials to create selective PCB-binding domains with high affinity and selectivity for PCBs (Project 4) and a functionalized polymer immobilized membrane platform to support PCB dechlorination (Project 5). All Projects focus on common PCB toxicants. Biomedical scientists, with the Research Support Core, also evaluate byproducts of environmental science projects for unintended effects. Use of PCBs as a model contaminant will advance understanding of inflammatory diseases associated with exposure to persistent chlorinated organic pollutants. Research results will lead to evidence-based multidirectional information/education, technology transfer, training, policy and translational activities via UK-SRC cores. Expected outcomes include positive lifestyle interventions across the lifespan for populations at risk and advanced technical capacity to reduce public health risks.

Public Health Relevance

The proposed research may lead to novel dietary and exercise recommendations, contaminant detection and remediation technology development and policy recommendations for populations at risk to improve the health of people residing near Superfund sites. Outcomes should provide important technology tools and insights for primary stakeholders to use in improving Superfund site risk assessment and management, specifically related to the class of compounds known as chlorinated organics.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LKB-K (S))
Program Officer
Henry, Heather F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kentucky
Veterinary Sciences
Schools of Earth Sciences/Natur
United States
Zip Code
Hoffman, Jessie B; Hennig, Bernhard (2017) Protective influence of healthful nutrition on mechanisms of environmental pollutant toxicity and disease risks. Ann N Y Acad Sci 1398:99-107
Tang, Shuo; Floy, Martha; Bhandari, Rohit et al. (2017) Synthesis and Characterization of Thermoresponsive Hydrogels Based on N-Isopropylacrylamide Crosslinked with 4,4'-Dihydroxybiphenyl Diacrylate. ACS Omega 2:8723-8729
Reichman, Rivka; Shirazi, Elham; Colliver, Donald G et al. (2017) US residential building air exchange rates: new perspectives to improve decision making at vapor intrusion sites. Environ Sci Process Impacts 19:87-100
Hoover, Anna Goodman (2017) Sensemaking, stakeholder discord, and long-term risk communication at a US Superfund site. Rev Environ Health 32:165-169
Hennig, Bernhard (2017) Environmental challenges in Central and Eastern Europe. Rev Environ Health 32:1
Perkins, Jordan T; Petriello, Michael C; Xu, Li et al. (2017) An open-sourced statistical application for identifying complex toxicological interactions of environmental pollutants. Rev Environ Health 32:23-26
Shirazi, Elham; Pennell, Kelly G (2017) Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains. Environ Sci Process Impacts 19:1594-1607
Bertrand, Luc; Dygert, Levi; Toborek, Michal (2017) Induction of Ischemic Stroke and Ischemia-reperfusion in Mice Using the Middle Artery Occlusion Technique and Visualization of Infarct Area. J Vis Exp :
Gutierrez, Angela M; Dziubla, Thomas D; Hilt, J Zach (2017) Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev Environ Health 32:111-117
Hoffman, Jessie B; Petriello, Michael C; Hennig, Bernhard (2017) Impact of nutrition on pollutant toxicity: an update with new insights into epigenetic regulation. Rev Environ Health 32:65-72

Showing the most recent 10 out of 241 publications