(Project 2 - Pearson, Swanson) Polychlorinated biphenyls (PCBs), one of a number of chlorinated organic pollutants, are highly lipid-soluble toxins that are characterized by relative chemical stability and prevalence in the environment. These traits are responsible for their widely recognized role as a source of serious environmental public health risks. PCBs have been shown to cross the placenta and enter breast milk, and a recent paper suggests that prenatal organochlorine levels contribute to gender-specific obesity development in children. In a mouse model, additional observations revealed that offspring exposed perinatally to PCB 126, a coplanar PCB that acts through the aryl hydrocarbon receptor, had significantly worse fat and lean mass profiles compared to offspring born to vehicle-treated dams. Further, mature offspring born to PCB-exposed dams had impaired glucose tolerance compared to offspring from vehicle-treated dams. The principal investigator's group has shown that short-term maternal voluntary exercise prior to and during healthy pregnancy and nursing can enhance long- term glucose homeostasis in offspring. The goal of the proposed research is to elucidate the potential long- term health complications and mechanisms of PCB toxicity during the critical periods of in utero and early postnatal life and to explore maternal exercise as a transgenerational intervention.
Specific Aim 1 will establish the importance of the timing of perinatal PCB exposure (unexposed/in utero exposure/postnatal exposure/in utero + postnatal exposure) that precipitates impaired glucose tolerance in offspring. A subset of offspring will be fed a high fat diet to determine whether a 'second hit'will exacerbate the PCB-induced detriments.
Specific Aim 2 will elucidate the mechanism of impaired glucose tolerance in offspring born to PCB-exposed dams.
Specific Aim 3 will test if voluntary maternal exercise can be used as an intervention to protect adult offspring from the long-term effects of perinatal PCB exposure. The proposed studies will provide new etiological evidence supporting current observations that perinatal exposures to environmental PCBs are important contributors to the epidemic of diabetes in the United States. This work will also contribute innovative new insights to understanding the role of exercise in mitigating the environmental health impacts of PCB exposure by highlighting pregnancy as a sensitive period when environmental pollutants could have significant and long- lasting effects on offspring metabolism and when interventions could prove effective in ameliorating the detrimental health outcomes. Anticipated results are particularly significant in that they highlight early developmental stages, i.e., fetal and neonatal, as potential periods of particular vulnerability to lasting effects of toxic environmental insult from PCB contamination.

Public Health Relevance

Obesity and diabetes are at epidemic levels, and the toxicity of environmental contaminants during perinatal development could be a significant contributor to these trends. The proposed studies will provide novel information on the detrimental impact that pollutants can have on maternal and offspring health and will test whether the lifestyle intervention, maternal exercise, can attenuate these effects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES007380-17A1
Application #
8649939
Study Section
Special Emphasis Panel (ZES1-LKB-K (S))
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
17
Fiscal Year
2014
Total Cost
$330,976
Indirect Cost
$87,976
Name
University of Kentucky
Department
Type
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40506
Petriello, Michael C; Hoffman, Jessie B; Vsevolozhskaya, Olga et al. (2018) Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environ Pollut 242:1022-1032
Petriello, Michael C; Charnigo, Richard; Sunkara, Manjula et al. (2018) Relationship between serum trimethylamine N-oxide and exposure to dioxin-like pollutants. Environ Res 162:211-218
Deng, Pan; Barney, Jazmyne; Petriello, Michael C et al. (2018) Hepatic metabolomics reveals that liver injury increases PCB 126-induced oxidative stress and metabolic dysfunction. Chemosphere 217:140-149
Preston, Joshua D; Reynolds, Leryn J; Pearson, Kevin J (2018) Developmental Origins of Health Span and Life Span: A Mini-Review. Gerontology 64:237-245
Gupta, Prachi; Thompson, Brendan L; Wahlang, Banrida et al. (2018) The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics. Drug Deliv Transl Res 8:740-759
Roghani, Mohammadyousef; Jacobs, Olivia P; Miller, Anthony et al. (2018) Occurrence of chlorinated volatile organic compounds (VOCs) in a sanitary sewer system: Implications for assessing vapor intrusion alternative pathways. Sci Total Environ 616-617:1149-1162
Ahmad, Irfan; Weng, Jiaying; Stromberg, A J et al. (2018) Fluorescence based detection of polychlorinated biphenyls (PCBs) in water using hydrophobic interactions. Analyst :
Hernández, Sebastián; Porter, Cassandra; Zhang, Xinyi et al. (2017) Layer-by-layer Assembled Membranes with Immobilized Porins. RSC Adv 7:56123-56136
Wahlang, Banrida; Barney, Jazmyne; Thompson, Brendan et al. (2017) Editor's Highlight: PCB126 Exposure Increases Risk for Peripheral Vascular Diseases in a Liver Injury Mouse Model. Toxicol Sci 160:256-267
Bertrand, Luc; Dygert, Levi; Toborek, Michal (2017) Induction of Ischemic Stroke and Ischemia-reperfusion in Mice Using the Middle Artery Occlusion Technique and Visualization of Infarct Area. J Vis Exp :

Showing the most recent 10 out of 255 publications